1 |
Bai XF, Xu FL, Wang WL, Zhao YF, Wang LL, Sun PY. Ecological stoichiometry of soil carbon, nitrogen and phosphorus in a Larix principis-rupprechtii plantation. Sci Soil Water Conserv, 2015, 13(6): 68-75, in Chinese
DOI
|
2 |
Banerjee BP, Joshi S, Thoday-Kennedy E, Pasam RK, Tibbits J, Hayden M, Spangenberg G, Kant S. High-throughput phenotyping using digital and hyperspectral imaging-derived biomarkers for genotypic nitrogen response. J Exp Bot, 2020, 71(15): 4604-4615,
DOI
|
3 |
Barzin R, Kamangir H, Bora GC. Comparison of machine learning methods for leaf nitrogen estimation in corn using multispectral UAV images. Trans ASABE, 2021, 64(6): 2089-2101,
DOI
|
4 |
Bertsimas D, Dunn J. Optimal classification trees. Mach Learn, 2017, 106(7): 1039-1082,
DOI
|
5 |
Breiman L. Random forests. Mach Learn, 2001, 45: 5-32,
DOI
|
6 |
Deng HJ, Zhang LN, Zhang GS, Lin YM, Wu CZ, Hong W. Effects of nitrogen deposition on leaf elements and their stoichiometric ratios in Schima superba and Pinus massoniana mixed forest. J for Environ, 2015, 35(2): 118-124, in Chinese
DOI
|
7 |
|
8 |
Elzhov TV, Mullen KM, Spiess A, Bolker B (2016) Package ‘minpack. lm’. Title R Interface Levenberg-Marquardt Nonlinear Least-Sq. Algorithm Found MINPACK Plus Support Bounds. Available at: https://rdrr.io/cran/minpack.lm/
|
210 |
Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data An 38:367–378
|
9 |
Genuer R, Poggi JM. Random forests with R, 2020 Berlin Springer,
DOI
|
10 |
Ghosal S, Blystone D, Singh AK, Ganapathysubramanian B, Singh A, Sarkar S. An explainable deep machine vision framework for plant stress phenotyping. PNAS, 2018, 115(18): 4613-4618,
DOI
|
11 |
Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245): 255-260,
DOI
|
200 |
Ji JY, Luo YP, Sun XS, Chen FH, Luo G, Wu YJ, Gao Y, Ji RR (2021) Improving image captioning by leveraging intra- and inter-layer global representation in transformer network. AAAI21 35:1655–1663. https://doi.org/10.1609/aaai.v35i2.16258
|
12 |
Kou JM, Duan L, Yin CX, Ma LL, Chen XY, Gao P, Lv X. Predicting leaf nitrogen content in cotton with UAV RGB images. Sustainability, 2022, 14(15): 9259,
DOI
|
13 |
Li XZ, Xie RZ, Wang KR, Bai ZY, Li SK, Wang FY, Gao SJ. Acquiring nitrogen quantity in digital image of cotton leaf by artificial neutral network model. Acta Agron Sin, 2007, 33(10): 1662-1666 in Chinese
|
14 |
Li RR, Lu Y, Wang YM, Wan FX. Effects of N addition on C, N and P stoichiometry and soil enzyme activities in Cupressus lusitanica Mill. plantation. Chin J Ecol, 2019, 38(2): 384-393, in Chinese
DOI
|
15 |
Li W, Zhu X, Yu X, Li M, Tang X, Zhang J, Xue Y, Zhang C, Jiang Y. Inversion of nitrogen concentration in apple canopy based on UAV hyperspectral images. Sensors (basel), 2022, 22(9): 3503,
DOI
|
16 |
Liang J, Liu SY, Wang SB, Huang LP, Zhang JL, Wu QB, Guo F, Meng WW, Chen TT, Qi HX, Wang LD, Zhang Z, Wan SB, Zhang L. Peanut nitrogen nutrition inversion based on unmanned aerial vehicle remote sensing. Chin J Oil Crop Sci, 2020, 42(6): 1043-1050, in Chinese
DOI
|
17 |
Lin H, Yan EP, Wang GX, Song RF (2014) Analysis of hyperspectral bands for the health diagnosis of tree species. In: 2014 third international workshop on earth observation and remote sensing applications (EORSA), Changsha. IEEE, pp 448–451
|
18 |
Liu XF, Lyu Q, He SL, Yi SL, Hu DY, Wang ZT, Xie RJ, Zheng YQ, Deng L. Estimation of carbon and nitrogen contents in citrus canopy by low-altitude remote sensing. Int J Agric Biol Eng, 2016, 9(5): 149-157,
DOI
|
19 |
Liu ZL, Peng CH, Work T, Candau JN, DesRochers A, Kneeshaw D. Application of machine-learning methods in forest ecology: recent progress and future challenges. Environ Rev, 2018, 26(4): 339-350,
DOI
|
20 |
Lu JS, Cheng DL, Geng CM, Zhang ZT, Xiang YZ, Hu TT. Combining plant height, canopy coverage and vegetation index from UAV-based RGB images to estimate leaf nitrogen concentration of summer maize. Biosyst Eng, 2021, 202: 42-54,
DOI
|
21 |
McCann CM, Baylis M, Williams DJL. The development of linear regression models using environmental variables to explain the spatial distribution of Fasciola hepatica infection in dairy herds in England and Wales. Int J Parasitol, 2010, 40(9): 1021-1028,
DOI
|
22 |
Nie LC. Hyperspectral inversion of carbon, nitrogen and phosphorus stoichiometry of dominant plants in Yancheng Coastal Wetland. Acta Eco Sin, 2023, 43(12): 5173-5185,
DOI
|
23 |
Noguera M, Aquino A, Ponce JM, Cordeiro A, Silvestre J, Arias-Calderón R, da Encarnação MM, Jordão P, Andújar JM. Nutritional status assessment of olive crops by means of the analysis and modelling of multispectral images taken with UAVs. Biosyst Eng, 2021, 211: 1-18,
DOI
|
24 |
Onishi M, Ise T. Explainable identification and mapping of trees using UAV RGB image and deep learning. Sci Rep, 2021, 11: 903,
DOI
|
25 |
Peng XL, Chen DY, Zhou ZJ, Zhang ZT, Xu C, Zha Q, Wang F, Hu XT. Prediction of the nitrogen, phosphorus and potassium contents in grape leaves at different growth stages based on UAV multispectral remote sensing. Remote Sens, 2022, 14(11): 2659,
DOI
|
27 |
Prado Osco L, Marques Ramos AP, Roberto Pereira D, Akemi Saito Moriya É, Nobuhiro Imai N, Takashi Matsubara E, Estrabis N, de Souza M, Marcato J Jr, Gonçalves WN, Li J, Liesenberg V, Eduardo Creste J. Predicting canopy nitrogen content in Citrus-trees using random forest algorithm associated to spectral vegetation indices from UAV-imagery. Remote Sens, 2019, 11(24): 2925,
DOI
|
28 |
Qiu ZC, Ma F, Li ZW, Xu XB, Ge HX, Du CW. Estimation of nitrogen nutrition index in rice from UAV RGB images coupled with machine learning algorithms. Comput Electron Agric, 2021, 189,
DOI
|
29 |
Racine JS. RStudio: a platform-independent IDE for R and sweave. J Appl Econom, 2012, 27(1): 167-172,
DOI
|
30 |
Ridgeway G, Ridgeway M (2004) The gbm package. R Foundation for Statistical Computing, Vienna, Austria 5(3).
|
31 |
Roth RT, Chen KR, Scott JR, Jung J, Yang Y, Camberato JJ, Armstrong SD. Prediction of cereal rye cover crop biomass and nutrient accumulation using multi-temporal unmanned aerial vehicle based visible-spectrum vegetation indices. Remote Sens, 2023, 15(3): 580,
DOI
|
32 |
Shen X, Cao L, Coops NC, Fan HC, Wu XQ, Liu H, Wang GB, Cao FL. Quantifying vertical profiles of biochemical traits for forest plantation species using advanced remote sensing approaches. Remote Sens Environ, 2020, 250,
DOI
|
33 |
Shi PH, Wang Y, Xu JM, Zhao YL, Yang BL, Yuan ZQ, Sun QY. Rice nitrogen nutrition estimation with RGB images and machine learning methods. Comput Electron Agric, 2021, 180,
DOI
|
34 |
Smola AJ, Schölkopf B. A tutorial on support vector regression. Stat Comput, 2004, 14(3): 199-222,
DOI
|
35 |
Sun Y, Wang C, Chen X, Liu S, Lu X, Chen HYH, Ruan H. Phosphorus additions imbalance terrestrial ecosystem C: N: P stoichiometry. Glob Chang Biol, 2022, 28(24): 7353-7365,
DOI
|
36 |
Swift ML. GraphPad prism, data analysis, and scientific graphing. J Chem Inf Comput Sci, 1997, 37(2): 411-412,
DOI
|
37 |
Tang ZY, Xu WT, Zhou GY, Bai YF, Li JX, Tang XL, Chen DM, Liu Q, Ma WH, Xiong GM, He HL, He NP, Guo YP, Guo Q, Zhu JL, Han WX, Hu HF, Fang JY, Xie ZQ. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. PNAS, 2018, 115(16): 4033-4038,
DOI
|
38 |
|
39 |
|
40 |
Tian D, Du EZ, Jiang L, Ma SH, Zeng WJ, Zou AL, Feng CY, Xu LC, Xing AJ, Wang W, Zheng CY, Ji CJ, Shen HH, Fang JY. Responses of forest ecosystems to increasing N deposition in China: a critical review. Environ Pollut, 2018, 243: 75-86,
DOI
|
41 |
Tognetti PM, Prober SM, Báez S, Chaneton EJ, Firn J, Risch AC, Schuetz M, Simonsen AK, Yahdjian L, Borer ET, Seabloom EW, Arnillas CA, Bakker JD, Brown CS, Cadotte MW, Caldeira MC, Daleo P, Dwyer JM, Fay PA, Gherardi LA, Hagenah N, Hautier Y, Komatsu KJ, McCulley RL, Price JN, Standish RJ, Stevens CJ, Wragg PD, Sankaran M. Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. PNAS, 2021, 118(28): ,
DOI
|
42 |
Tong R, Wen YX, Wang JY, Lou CY, Ma C, Zhu NF, Yuan WW, Geoff Wang G, Wu TG. Root nutrient capture and leaf resorption efficiency modulated by different influential factors jointly alleviated P limitation in Quercus acutissima across the North-South Transect of Eastern China. For Res, 2022,
DOI
|
201 |
Torresan C, Benito Garzón M, O’grady M, Robson TM, Picchi G, Panzacchi P, Tomelleri E, Smith M, Marshall L, Tognetti R, Rustad LE, Kneeshaw D (2021) A new generation of sensors and monitoring tools to support climate-smart forestry practices. Can J Forest Res 51(12):1751–1765
|
43 |
Urban A, Rogowski P, Wasilewska-Dębowska W, Romanowska E. Understanding maize response to nitrogen limitation in different light conditions for the improvement of photosynthesis. Plants (basel), 2021, 10(9): 1932,
DOI
|
44 |
Wager S, Hastie T, Efron B. Confidence intervals for random forests: the jackknife and the infinitesimal jackknife. J Mach Learn Res, 2014, 15(1): 1625-1651
|
45 |
Wang Y, Wang DJ, Zhang G, Wang J. Estimating nitrogen status of rice using the image segmentation of G-R thresholding method. Field Crops Res, 2013, 149: 33-39,
DOI
|
46 |
Wang JY, Wang JN, Guo WH, Li YG, Wang GG, Wu TG. Stoichiometric homeostasis, physiology, and growth responses of three tree species to nitrogen and phosphorus addition. Trees, 2018, 32(5): 1377-1386,
DOI
|
47 |
Wang RZ, Mao YX, Yun LL, You WZ, Zhang HD. Effects of nitrogen addition on leaf carbon, nitrogen and phosphorus stoichiometry and nonstructural carbohydrates in Mongolian oak (Quercus mongolica). Chin J Ecol, 2022, 41(7): 1369-1377,
DOI
|
48 |
Wen BB, Xiao W, Mu Q, Li DM, Chen XD, Wu HY, Li L, Peng FT. How does nitrate regulate plant senescence?. Plant Physiol Biochem, 2020, 157: 60-69,
DOI
|
49 |
Wen YX, Tong R, Zhang H, Feng KQ, Song R, Wang GG, Wu TG. N addition decreased stand structure diversity in young but increased in middle-aged Metasequoia glyptostroboides plantations. Glob Ecol Conserv, 2021, 30,
DOI
|
50 |
Wu L, Gong YJ, Bai XP, Wang W, Wang Z. Nondestructive determination of leaf nitrogen content in corn by hyperspectral imaging using spectral and texture fusion. Appl Sci, 2023, 13(3): 1910,
DOI
|
51 |
Xiao Q, Tang W, Zhang C, Zhou L, Feng L, Shen J, Yan T, Gao P, He Y, Wu N. Spectral preprocessing combined with deep transfer learning to evaluate chlorophyll content in cotton leaves. Plant Phenomics, 2022, 2022: 9813841,
DOI
|
52 |
Xiao Q, Wu N, Tang W, Zhang C, Feng L, Zhou L, Shen J, Zhang Z, Gao P, He Y. Visible and near-infrared spectroscopy and deep learning application for the qualitative and quantitative investigation of nitrogen status in cotton leaves. Front Plant Sci, 2022, 13: 1080745,
DOI
|
53 |
Xu M, Zhu Y, Zhang S, Feng Y, Zhang W, Han X. Global scaling the leaf nitrogen and phosphorus resorption of woody species: Revisiting some commonly held views. Sci Total Environ, 2021, 788,
DOI
|
54 |
Yamashita H, Sonobe R, Hirono Y, Morita A, Ikka T. Dissection of hyperspectral reflectance to estimate nitrogen and chlorophyll contents in tea leaves based on machine learning algorithms. Sci Rep, 2020, 10: 17360,
DOI
|
55 |
Yang B, Wang M, Sha Z, Wang B, Chen J, Yao X, Cheng T, Cao W, Zhu Y. Evaluation of aboveground nitrogen content of winter wheat using digital imagery of unmanned aerial vehicles. Sensors (basel), 2019, 19(20): E4416,
DOI
|
56 |
Yang MJ, Hassan MA, Xu KJ, Zheng CY, Rasheed A, Zhang Y, Jin XL, Xia XC, Xiao YG, He ZH. Assessment of water and nitrogen use efficiencies through UAV-based multispectral phenotyping in winter wheat. Front Plant Sci, 2020, 11: 927,
DOI
|
57 |
You C, Wu F, Yang W, Xu Z, Tan B, Yue K, Ni X. Nutrient-limited conditions determine the responses of foliar nitrogen and phosphorus stoichiometry to nitrogen addition: a global meta-analysis. Environ Pollut, 2018, 241: 740-749,
DOI
|
58 |
Yuan ZY, Chen HY. Negative effects of fertilization on plant nutrient resorption. Ecology, 2015, 96(2): 373-380,
DOI
|
59 |
Zhang LP, Zhang LF, Du B. Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geosci Remote Sens Mag, 2016, 4(2): 22-40,
DOI
|
60 |
Zhang XH, Qiao Y, Meng FF, Fan CG, Zhang MM. Identification of maize leaf diseases using improved deep convolutional neural networks. IEEE Access, 2018, 6: 30370-30377,
DOI
|
62 |
Zhang Y, Wu JB, Wang AZ. Comparison of various approaches for estimating leaf water content and stomatal conductance in different plant species using hyperspectral data. Ecol Indic, 2022, 142,
DOI
|
63 |
Zheng HB, Cheng T, Li D, Zhou X, Yao X, Tian YC, Cao WX, Zhu Y. Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice. Remote Sens, 2018, 10(6): 824,
DOI
|