1 |
Adnan M, Gazder U. Investigation of helmet use behavior of motorcyclists and effectiveness of enforcement campaign using CART approach. IATSS Res, 2019, 43(3): 195-203,
DOI
|
2 |
Almarinez BJM, Fadri MJA, Lasina R, Tavera MAA, Carvajal TM, Watanabe K, Legaspi JC, Amalin DM. A bioclimate-based maximum entropy model for Comperiella calauanica barrion, almarinez and amalin (Hymenoptera: Encyrtidae) in the Philippines. InSects, 2021, 12(1): 26,
DOI
|
3 |
Bibi M, Hanif MK, Sarwar MU, Khan MI, Khan SZ, Shivachi CS, Anees A. Monitoring population phenology of Asian citrus psyllid using deep learning. Complexity, 2021, 2021: 1-10,
DOI
|
4 |
Bocca FF, Rodrigues LHA. The effect of tuning, feature engineering, and feature selection in data mining applied to rainfed sugarcane yield modelling. Comput Electron Agric, 2016, 128: 67-76,
DOI
|
5 |
Breiman L. Random forests. Mach Learn, 2001, 45: 5-32,
DOI
|
6 |
Buda M, Maki A, Mazurowski MA. A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw, 2018, 106: 249-259,
DOI
|
7 |
Camilo Corrales D, Lasso E, Ledezma A, Carlos Corrales J. Feature selection for classification tasks: expert knowledge or traditional methods?. J Intell Fuzzy Syst, 2018, 34(5): 2825-2835,
DOI
|
8 |
Cendoya M, Hubel A, Conesa D, Vicent A. Modeling the spatial distribution of Xylella fastidiosa: a nonstationary approach with dispersal barriers. Phytopathology, 2022, 112(5): 1036-1045,
DOI
|
9 |
Chen C, Zhang QM, Yu B, Yu ZM, Lawrence PJ, Ma Q, Zhang Y. Improving protein-protein interactions prediction accuracy using XGBoost feature selection and stacked ensemble classifier. Comput Biol Med, 2020, 123,
DOI
|
10 |
Chen P, Xiao QX, Zhang J, Xie CJ, Wang B. Occurrence prediction of cotton pests and diseases by bidirectional long short-term memory networks with climate and atmosphere circulation. Comput Electron Agric, 2020, 176,
DOI
|
11 |
Cuéllar AC, Kjær LJ, Baum A, Stockmarr A, Skovgard H, Nielsen SA, Andersson MG, Lindström A, Chirico J, Lühken R, Steinke S, Kiel E, Gethmann J, Conraths FJ, Larska M, Smreczak M, Orłowska A, Hamnes I, Sviland S, Hopp P, Brugger K, Rubel F, Balenghien T, Garros C, Rakotoarivony I, Allène X, Lhoir J, Chavernac D, Delécolle JC, Mathieu B, Delécolle D, Setier-Rio ML, Scheid B, Chueca MÁM, Barceló C, Lucientes J, Estrada R, Mathis A, Venail R, Tack W, Bødker R. Modelling the monthly abundance of Culicoides biting midges in nine European countries using Random Forests machine learning. Parasit Vectors, 2020, 13(1): 194,
DOI
|
12 |
|
13 |
Damos PT, Dorrestijn J, Thomidis T, Tuells J, Caballero P. A temperature conditioned Markov chain model for predicting the dynamics of mosquito vectors of disease. InSects, 2021, 12(8): 725,
DOI
|
14 |
Dornik A, Drăguţ L, Urdea P. Classification of soil types using geographic object-based image analysis and random forests. Pedosphere, 2018, 28(6): 913-925,
DOI
|
15 |
|
16 |
Hashim IC, Shariff ARM, Bejo SK, Muharam FM, Ahmad K. Machine-learning approach using sar data for the classification of oil palm trees that are non-infected and in-fected with the basal stem rot disease. Agronomy-Basel, 2021, 11(3): 532,
DOI
|
17 |
Hashim IC, Shariff ARM, Bejo SK, Muharam FM, Ahmad K. Classification of non-infected and infected with basal stem rot disease using thermal images and imbalanced data approach. Agronomy-Basel, 2021, 11(12): 2373,
DOI
|
18 |
He HB, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng, 2009, 21(9): 1263-1284,
DOI
|
19 |
Jing X, Zou Q, Yan JM, Dong YY, Li BY. Remote sensing monitoring of winter wheat stripe rust based on mrmr-xgboost algorithm. Remote Sens, 2022, 14(3): 756,
DOI
|
20 |
Kale AP, Sonavane SP. IoT based smart farming: feature subset selection for optimized high-dimensional data using improved GA based approach for ELM. Comput Electron Agric, 2019, 161: 225-232,
DOI
|
21 |
|
22 |
Krawczyk B. Learning from imbalanced data: open challenges and future directions. Prog Artif Intell, 2016, 5(4): 221-232,
DOI
|
23 |
Lasso E, Corrales DC, Avelino J, de Melo Virginio Filho E, Corrales JC, . Discovering weather periods and crop properties favorable for coffee rust incidence from feature selection approaches. Comput Electron Agric, 2020, 176,
DOI
|
24 |
Lee DS, Choi WI, Nam Y, Park YS. Predicting potential occurrence of pine wilt disease based on environmental factors in South Korea using machine learning algorithms. Ecol Inform, 2021, 64,
DOI
|
25 |
Li DC, Wang YR, Hu WJ, Chen FY, Zhao JY, Chen X, Han L. Application of machine learning classifier to Candida auris drug resistance analysis. Front Cell Infect Microbiol, 2021, 11,
DOI
|
26 |
Liu DQ, Zhang XL. occurrence prediction of pine wilt disease based on CA-markov model. Forests, 2022, 13(10): 1736,
DOI
|
27 |
Ma HQ, Huang WJ, Jing YS, Yang CH, Han LX, Dong YY, Ye HC, Shi Y, Zheng Q, Liu LY, Ruan C. Integrating growth and environmental parameters to discriminate powdery mildew and aphid of winter wheat using bi-temporal landsat-8 imagery. Remote Sens, 2019, 11(7): 846,
DOI
|
28 |
Magidson J (2013) Correlated Component Regression: Re-Thinking Regression in the Presence of Near Collinearity. New Perspectives in Partial Least Squares and Related Methods 65–78. https://doi.org/10.1007/978-1-4614-8283-3_3
|
29 |
Martinetti D, Soubeyrand S. Identifying lookouts for epidemio-surveillance: application to the emergence of Xylella fastidiosa in France. Phytopathology, 2019, 109(2): 265-276,
DOI
|
30 |
Pless E, Saarman NP, Powell JR, Caccone A, Amatulli G. A machine-learning approach to map landscape connectivity in Aedes aegypti with genetic and environmental data. Proc Natl Acad Sci USA, 2021, 118(9): ,
DOI
|
31 |
|
32 |
Quah Y, Yi-Le JC, Park NH, Lee YY, Lee EB, Jang SH, Kim MJ, Rhee MH, Lee SJ, Park SC. Serum biomarker-based osteoporosis risk prediction and the systemic effects of trifolium pratense ethanolic extract in a postmenopausal model. Chin Med, 2022, 17(1): 70,
DOI
|
33 |
Rahman MS, Pientong C, Zafar S, Ekalaksananan T, Paul RE, Haque U, Rocklöv J, Overgaard HJ. Mapping the spatial distribution of the dengue vector aedes aegypti and predicting its abundance in northeastern Thailand using machine-learning approach. One Health, 2021, 13,
DOI
|
34 |
Ramazi P, Kunegel-Lion M, Greiner R, Lewis MA. Predicting insect outbreaks using machine learning: a mountain pine beetle case study. Ecol Evol, 2021, 11(19): 13014-13028,
DOI
|
35 |
Ruusunen O, Jalli M, Jauhiainen L, Ruusunen M, Leiviska K. Advanced data analysis as a tool for net blotch density estimation in spring barley. Agriculture-Basel, 2020, 10(5): 179,
DOI
|
36 |
Sambasivam G, Opiyo GD. A predictive machine learning application in agriculture: cassava disease detection and classification with imbalanced dataset using convolutional neural networks. Egypt Inform J, 2021, 22(1): 27-34,
DOI
|
37 |
Sharif M, Khan MA, Iqbal Z, Azam MF, Lali MIU, Javed MY. Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection. Comput Electron Agric, 2018, 150: 220-234,
DOI
|
38 |
Soroka J, Grenkow L, Carcamo H, Meers S, Barkley S, Gavloski J. An assessment of degree-day models to predict the phenology of alfalfa weevil (coleoptera: curculionidae) on the Canadian Prairies. Can Entomol, 2020, 152(1): 110-129,
DOI
|
39 |
Suksavate W, Wei Y, Lundquist J. Studying the probability of spruce beetle caused mortality in colorado’s spruce forests using bayesian hierarchical models. Nat Resour Model, 2021, 34(1): ,
DOI
|
40 |
Tepa-Yotto GT, Gouwakinnou GN, Fagbohoun JR, Tamò M, Saethre MG. Horizon scanning to assess the bioclimatic potential for the alien species Spodoptera eridania and its parasitoids after pest detection in west and central Africa. Pest Manag Sci, 2021, 77(10): 4437-4446,
DOI
|
41 |
Tepa-Yotto GT, Tonnang HEZ, Goergen G, Subramanian S, Kimathi E, Abdel-Rahman EM, Flø D, Thunes KH, Fiaboe KKM, Niassy S, Bruce A, Mohamed SA, Tamò M, Ekesi S, Sæthre MG. Global habitat suitability of spodoptera frugiperda (JE Smith) (lepidoptera, noctuidae): key parasitoids considered for its biological control. InSects, 2021, 12(4): 273,
DOI
|
42 |
Wang SH, Dai JG, Zhao QZ, Cui MN. Application of grey systems in predicting the degree of cotton spider mite infestations. Grey Syst, 2017, 7(3): 353-364,
DOI
|
43 |
|
44 |
Wei X, Yan Y, Bu JD, Mu ZJ. Research on long-term detection and reporting technology of Botryosphaeria laricina. Forestry Sci Techn, 1997, 22(4): 26-29 (in Chinese)
|
45 |
Wolpert DH. Stacked generalization. Neural Netw, 1992, 5(2): 241-259,
DOI
|
46 |
Xiao QX, Li WL, Kai YZ, Chen P, Zhang J, Wang B. Occurrence prediction of pests and diseases in cotton on the basis of weather factors by long short term memory network. BMC Bioinformatics, 2019, 20(Suppl 25): 688,
DOI
|
47 |
Yu WX, Zhao JZ. Research on the causes of botryosphaeria laricina. J Jilin Agric Uni, 1998, S1: 127 (in Chinese)
|
48 |
Zhong MH, Zhang WL, Li YR, Zhu ZF, Zhao Y. GBDT based railway accident type prediction and cause analysis. Acta Autom Sin, 2022, 48(2): 470-478
|