1 |
Aasamaa K, Heinsoo K, Holm B. Biomass production, water use and photosynthesis of Salix clones grown in a wastewater purification system. Biomass Bioenergy, 2010, 34(6): 897-905,
DOI
|
2 |
Ashford AE, Peterson CA, Carpenter JL, Cairney JWG, Allaway WG. Structure and permeability of the fungal sheath in the Pisonia mycorrhiza. Protoplasma, 1988, 147(2): 149-161,
DOI
|
3 |
Berta G, Trotta A, Fusconi A, Hooker JE, Munro M, Atkinson D, Giovannetti M, Morini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S. Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol, 1995, 15(5): 281-293,
DOI
|
4 |
Blom JM, Vannini A, Vettraino AM, Hale MD, Godbold DL. Ectomycorrhizal community structure in a healthy and a Phytophthora-infected chestnut (Castanea sativa Mill.) stand in central Italy. Mycorrhiza, 2009, 20(1): 25-38,
DOI
|
5 |
Chen L, Swenson NG, Ji NN, Mi XC, Ren HB, Guo LD, Ma KP. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science, 2019, 366(6461): 124-128,
DOI
|
6 |
Das D, Paries M, Hobecker K, Gigl M, Dawid C, Lam HM, Zhang JH, Chen MX, Gutjahr C. Phosphate starvation response transcription factors enable arbuscular mycorrhiza symbiosis. Nat Commun, 2022, 13(1): 477,
DOI
|
7 |
de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science, 2020, 368(6488): 270-274,
DOI
|
8 |
Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S. Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity, 2020, 12(10): 370,
DOI
|
9 |
Dighton J, White JF. The fungal community: its organization and role in the ecosystem, 2017 Boca Raton CRC Press 25-30,
DOI
|
10 |
Evelin H, Kapoor R, Giri B. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot, 2009, 104(7): 1263-1280,
DOI
|
11 |
Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 2002, 12(4): 185-190,
DOI
|
12 |
Gao FJ. Plant physiology test guide, 2006 Beijing Higher Education Press 74-144
|
13 |
Genre A, Lanfranco L, Perotto S, Bonfante P. Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol, 2020, 18(11): 649-660,
DOI
|
14 |
Gong MG, Tang M, Chen H, Zhang QM, Feng XX. Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New for, 2013, 44(3): 399-408,
DOI
|
15 |
Huang Y, Liu H, Jia ZC, Fang Q, Luo KM. Combined expression of antimicrobial genes (Bbchit1 and LJAMP2) in transgenic poplar enhances resistance to fungal pathogens. Tree Physiol, 2012, 32(10): 1313-1320,
DOI
|
16 |
Karti PH, Astuti DA, Nofyangtri S. The role of arbuscular mycorrhizal fungi in enhancing productivity, nutritional quality, and drought tolerance mechanism of Stylosanthes seabrana. Med Pet, 2012, 35(1): 67-72,
DOI
|
17 |
Kumar A, Dames JF, Gupta A, Sharma S, Gilbert JA, Ahmad P. Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: a biotechnological perspective. Crit Rev Biotechnol, 2015, 35(4): 461-474,
DOI
|
18 |
Lehto T, Zwiazek JJ. Ectomycorrhizas and water relations of trees: a review. Mycorrhiza, 2011, 21(2): 71-90,
DOI
|
19 |
Liu D. Managing both internal and foreign affairs—a PHR-centered gene network regulates plant-mycorrhizal symbiosis. Chin Bull Bot, 2021, 56(6): 647-650,
DOI
|
20 |
Liu T, Sheng M, Wang CY, Chen H, Li Z, Tang M. Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery. Photosynthetica, 2015, 53(2): 250-258,
DOI
|
21 |
Liu YL, Xin ZB, Li ZS, Keyimu M. Climate effect on the radial tree growth of Populus simonii in Northwest of Hebei for last four decades. Acta Ecol Sin, 2020, 40(24): 9108-9119,
DOI
|
22 |
Ma CX, Zhang Y, Kong DX, Gao Y, Xu LJ, Meng W. Analysis of fungi from Parametarhizium on improving the growth of mung beans under salt and alkali stress. Bull Bot Res, 2024, 44(2): 239-247,
DOI
|
23 |
Mathur N, Vyas A. Influence of arbuscular mycorrhizae on biomass production, nutrient uptake and physiological changes in Ziziphus mauritiana Lam. under water stress. J Arid Environ, 2000, 45(3): 191-195,
DOI
|
24 |
Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio-Tejo P. Drought induces oxidative stress in pea plants. Planta, 1994, 194(3): 346-352,
DOI
|
25 |
Nasir RW, Tanweer HM. Role of poplars in agroforestry systems in India. New York Science Journal, 2014, 7(2): 50-56,
DOI
|
26 |
Niu S. Object quality analysis, 1992 Beijing China Agricultural Press 62-65
|
27 |
Podila GK, Sreedasyam A, Muratet MA. Populus rhizosphere and the ectomycorrhizal interactome. Crit Rev Plant Sci, 2009, 28(5): 359-367,
DOI
|
28 |
Qi JY, Deng JF, Yin DC, Cai LX, Liu DP, Zhang LL, Lin M. Effects of inoculation of exogenous mycorrhizal fungi on the antioxidant and root configuration enzyme activity of Pinus tabulaeformis seedlings. Acta Ecol Sin, 2019, 39(8): 2826-2832,
DOI
|
29 |
Quoreshi AM, Khasa DP. Effectiveness of mycorrhizal inoculation in the nursery on root colonization, growth, and nutrient uptake of aspen and balsam poplar. Biomass Bioenergy, 2008, 32(5): 381-391,
DOI
|
30 |
Richardson AE, Barea JM, McNeill AM, Prigent CC. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil, 2009, 321(1–2): 305-339,
DOI
|
31 |
Rooney DC, Killham K, Bending GD, Baggs E, Weih M, Hodge A. Mycorrhizas and biomass crops: opportunities for future sustainable development. Trends Plant Sci, 2009, 14(10): 542-549,
DOI
|
32 |
Scheublin TR, Sanders IR, Keel C, van der Meer JR. Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J, 2010, 4(6): 752-763,
DOI
|
33 |
Sheng M, Tang M, Chen H, Yang BW, Zhang FF, Huang YH. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 2008, 18(6–7): 287-296,
DOI
|
34 |
Sheng M, Tang M, Zhang FF, Huang YH. Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza, 2011, 21(5): 423-430,
DOI
|
35 |
Smith FA, Grace EJ, Smith SE. More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol, 2009, 182(2): 347-358,
DOI
|
36 |
Song RQ, Wang F, Ji RQ, Qi JY. Effect of ectomycorrhizal fungi on the seedlings growth of Korea spruce. Acta Microbiol Sin, 2007, 47(6): 1091-1094,
DOI
|
37 |
Szuba A, Marczak Ł, Ratajczak I, Kasprowicz-Maluśki A, Mucha J. Integrated proteomic and metabolomic analyses revealed molecular adjustments in Populus × canescens colonized with the ectomycorrhizal fungus Paxillus involutus, which limited plant host growth. Environ Microbiol, 2020, 22(9): 3754-3771,
DOI
|
38 |
Tang M, Zhang RQ, Chen H, Zhang HH, Tian ZQ. Induced hydrolytic enzymes of ectomycorrhizal fungi against pathogen Rhizoctonia solani. Biotechnol Lett, 2008, 30(10): 1777-1782,
DOI
|
39 |
Wang C, Xie HX, Liu RJ, Li W, Guo SX, Li M. Salt tolerance of watermelon plants through AM fungus adjusting root architecture and mineral element balance. Mycosystema, 2021, 40(10): 2800-2810,
DOI
|
40 |
Wang JX, Zhang HQ, Gao J, Zhang Y, Liu YQ, Tang M. Effects of ectomycorrhizal fungi (Suillus variegatus) on the growth, hydraulic function, and non-structural carbohydrates of Pinus tabulaeformis under drought stress. BMC Plant Biol, 2021, 21(1): 171,
DOI
|
41 |
Wang XF, Hao LF, Hao JX, Hao WY, Bao HG, Bai SL. Growth responses of Pinus sylvestris var. mongolica seedlings under simulated nitrogen deposition and different inoculation of ectomycorrhizal fungi treatments. Bull Bot Res, 2021, 41(1): 138-144,
DOI
|
42 |
Xu N, Song FQ, Fan XX, Sui X, Chang W. Effects of salt stress on growth characteristics of arbuscular mycorrhizal Elaeagnus angustifolia seedlings. J Northeast For Univ, 2021, 49(6): 29-33,
DOI
|
43 |
Yang YR, Tang M, Sulpice R, Chen H, Tian S, Ban YH. Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. J Plant Growth Regul, 2014, 33(3): 612-625,
DOI
|
44 |
Yin DC, Deng X, Chet I, Song RQ. Physiological responses of Pinus sylvestris var. mongolica seedlings to the interaction between Suillus luteus and Trichoderma virens. Curr Microbiol, 2014, 69(3): 334-342,
DOI
|
45 |
Yin DC, Yang LB, Deng X, Chet I, Song RQ. How Trichoderma virens affects growth indicators, physiological and biochemical parameters of Pinus sylvestris var. mongolica seedlings. J Beijing For Univ, 2015, 37(1): 78-83,
DOI
|
46 |
Yin DC, Song RQ, Qi JY, Deng X. Ectomycorrhizal fungus enhances drought tolerance of Pinus sylvestris var. mongolica seedlings and improves soil condition. J For Res, 2018, 29(6): 1775-1788,
DOI
|
47 |
Yin DC, Halifu S, Song RQ, Qi JY, Deng X, Deng JF. Effects of an ectomycorrhizal fungus on the growth and physiology of Pinus sylvestris var. mongolica seedlings subjected to saline–alkali stress. J For Res, 2020, 31(3): 781-788,
DOI
|
48 |
Yin DC, Wang HL, Qi JY. The enhancement effect of calcium ions on ectomycorrhizal fungi-mediated drought resistance in Pinus sylvestris var. mongolica. J Plant Growth Regul, 2021, 40(4): 1389-1399,
DOI
|
49 |
Zai XM, Zhu SN, Qin P, Wang XY, Che L, Luo FX. Effect of Glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress. Photosynthetica, 2012, 50(3): 323-328,
DOI
|
50 |
Zhai SS, Ding GJ, Wang Y, Luo XM, Li M. Effects of Suillus luteus on root architecture of Pinus massoniana. J For Enviro, 2015, 35(3): 243-248,
DOI
|
51 |
Zhang YX, Bi YL, Shen HH, Zhang LJ. Arbuscular mycorrhizal fungi enhance sea buckthorn growth in coal mining subsidence areas in Northwest China. J Microbiol Biotechnol, 2020, 30(6): 848-855,
DOI
|
52 |
Zheng J, Hu MJ, Guo YP. Regulation of photosynthesis by light quality and its mechanism in plants. Chin J Appl Ecol, 2008, 19(7): 1619-1624,
DOI
|