1 |
Beer C, Lucht W, Gerten D, Thonicke K, Schmullius C. Effects of soil freezing and thawing on vegetation carbon density in Siberia: a modeling analysis with the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). Global Biogeochem Cycles, 2007, 21: 629-639,
DOI
|
2 |
Berzaghi F, Wright IJ, Kramer K, Oddou-Muratorio S, Bohn FJ, Reyer CP, Sabate S, Sanders TG, Hartig F. Towards a new generation of trait-flexible vegetation models. Trends Ecol Evol, 2020, 35: 191-205,
DOI
|
3 |
Borgy B, Violle C, Choler P, Garnier E, Kattge J, Loranger J, Amiaud B, Cellier P, Debarros G, Denelle P. Sensitivity of community-level trait–environment relationships to data representativeness: a test for functional biogeography. Glob Ecol Biogeogr, 2017, 26: 729-739,
DOI
|
4 |
Fisher RA, Muszala S, Verteinstein M, Lawrence P, Xu C, McDowell NG, Knox RG, Koven C, Holm J, Rogers BM, Spessa A, Lawrence D, Bonan G. Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED). Geosci Model Dev, 2015, 8: 3593-3619,
DOI
|
5 |
Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob Biogeochem Cycles, 1996, 10: 603-628,
DOI
|
6 |
|
7 |
He NP, Liu CC, Piao SL, Sack L, Xu L, Luo Y, He JS, Han XG, Zhou GS, Zhou XH, Lin Y, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Zhang JH, Yu GR. Ecosystem traits linking functional traits to macroecology. Trends Ecol Evol, 2019, 34: 200-210,
DOI
|
8 |
He NP, Yan P, Liu CC, Xu L, Li MX, Meerbeek KV, Zhou GS, Zhou GY, Liu SR, Zhou XH, Li SG, Niu SL, Han XG, Buckley TN, Sack L, Yu GR. Predicting ecosystem productivity based on plant community traits. Trends Plant Sci, 2022, 28: 45-53
|
9 |
Li XH, Sun JX. Testing parameter sensitivities and uncertainty analysis of Biome-BGC model in simulating carbon and water fluxes in broadleaved-Korean pine forests. Chin J Plant Ecol, 2018, 42: 1131-1144,
DOI
|
10 |
Li Y, Liu CC, Zhang JH, Yang H, Xu L, Wang QF, Sack L, Wu XQ, Hou JH, He NP. Variation in leaf chlorophyll concentration from tropical to cold-temperate forests: association with gross primary productivity. Ecol Indic, 2018, 85: 383-389,
DOI
|
11 |
Liu QY, Zhang TL, Du MX, Hao HL, Zhang QF, Sun R. A better carbon-water flux simulation in multiple vegetation types by data assimilation. For Ecosyst, 2022, 9: 100013,
DOI
|
12 |
Ren HG, Zhang L, Yan M, Tian X, Zheng XB. Sensitivity analysis of Biome-BGCMuSo for gross and net primary productivity of typical forests in China. For Ecosyst, 2022, 9: 100011,
DOI
|
13 |
Running SW, Hunt ER. Ehleringer JR, Field CB. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. Scaling physiological processes, 1993 San Diego Academic Press 141-158,
DOI
|
14 |
Running SW, Loveland TR, Pierce LL, Nemani RR, Hunt ER. A remote sensing based vegetation classification logic for global land cover analysis. Remote Sens Environ, 1995, 51: 39-48,
DOI
|
15 |
Sacks WJ, Schimel DS, Monson RK, Braswell BH. Model-data synthesis of diurnal and seasonal CO2 fluxes at Niwot Ridge, Colorado. Glol Change Biol, 2006, 12: 240-259,
DOI
|
16 |
Sakschewski B, von Bloh W, Boit A, Rammig A, Kattge J, Poorter L, Peñuelas J, Thonicke K. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob Change Biol, 2015, 21(7): 2711-2725,
DOI
|
17 |
Scheiter S, Langan L, Higgins SI. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol, 2013, 198: 957-969,
DOI
|
18 |
Taylor KE. Summarizing multiple aspects of model performance in a single diagram. J Geophys Res-Atmos, 2001, 106: 7183-7192,
DOI
|
500 |
Thornton PE, Running SW (1999) An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric For Meteorol 93:211–228
|
19 |
Thornton PE, Law BE, Gholz HL, Clark KL, Falge E, Ellsworth DS, Goldstein AH, Monson RK, Hollinger D, Falk M, Chen J, Sparks JP. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen Needleleaf forests. Agric For Meteorol, 2002, 113: 185-222,
DOI
|
20 |
Van Bodegom PM, Douma JC, Witte JPM, Ordonez JC, Bartholomeus RP, Aerts R. Going beyond limitations of plant functional types when predicting global ecosystem-atmosphere fluxes: exploring the merits of traits-based approaches. Glob Ecol Biogeogr, 2012, 21: 625-636,
DOI
|
21 |
Van Bodegom PM, Douma JC, Verheijen LM. A fully traits-based approach to modeling global vegetation distribution. Proc Natl Aacd Sci USA, 2014, 111: 13733-13738,
DOI
|
22 |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. Let the concept of trait be functional!. Oikos, 2007, 116: 882-892,
DOI
|
23 |
Wang RL, Yu GR, He NP, Wang QF, Zhao N, Xu ZW. Latitudinal variation of leaf morphological traits from species to communities along a forest transect in eastern China. J Geogr Sci, 2016, 26: 15-26,
DOI
|
24 |
Wang H, Prentice IC, Keenan TF, Davis TW, Wright IJ, Cornwell WK, Evans BJ, Peng CH. Towards a universal model for carbon dioxide uptake by plants. Nat Plants, 2017, 3: 734-741,
DOI
|
25 |
White MA, Thornton PE, Running SW, Nemani RR. Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary production controls. Earth Interact, 2000, 4: 1-84,
DOI
|
26 |
Zaehle S, Sitch S, Smith B, Hatterman F. Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics. Glob Biogeochem Cycles, 2005, 19: GB3020,
DOI
|
27 |
Zhang JH, He NP, Liu CC, Xu L, Chen Z, Li Y, Wang RM, Yu GR, Sun W, Xiao CW, Chen HYH, Reich PB. Variation and evolution of C: N ratio among different organs enable plants to adapt to N-limited environments. Glob Change Biol, 2020, 26: 2534-2543,
DOI
|