1 |
Abbaspour K, Vaghefi S, Srinivasan R. A guideline for successful calibration and uncertainty analysis for soil and water assessment: a review of papers from the 2016 international SWAT conference. Water, 2017, 10(1): 6,
DOI
|
2 |
Abbaspour KC (2007) User manual for SWAT-CUP, SWAT calibration and uncertainty analysis programs. In: Swiss Federal Institute of Aquatic Science and Technology, Eawag, Duebendorf, Switzerland, p 2007
|
3 |
Abbaspour KC, Johnson CA, Van Genuchten MT. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J, 2004, 3: 1340-1352,
DOI
|
4 |
Abbaspour KC, Rouholahnejad E, Vaghefi S, Srinivasan R, Yang H, Kløve BA. Continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT model. J Hydrol, 2015, 524: 733-752,
DOI
|
5 |
Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. 300(9), Fao, Rome
|
6 |
Almeida AC, Soares JV, Landsberg JJ, Rezende GD. Growth and water balance of Eucalyptus grandis hybrid plantations in Brazil during a rotation for pulp production. For Ecol Manag, 2007, 251(1–2): 10-21,
DOI
|
7 |
Anderson TR, Hawkins E, Jones PD. CO2, the greenhouse effect and global warming: from the pioneering work of arrhenius and callendar to today’s earth system models. Endeavour, 2016, 40(3): 178-187,
DOI
|
8 |
Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, van Griensven A, Van Liew NW. SWAT: model use, calibration, and validation. Trans ASABE, 2012, 55: 1491-1508,
DOI
|
9 |
Ashu AB, Lee SI. Assessing climate change effects on water balance in a monsoon watershed. Water, 2020, 12: 2564,
DOI
|
10 |
Baier W, Robertson GW. Estimation of latent evaporation from simple weather observations. Can J Plant Sci, 1965, 45(3): 276-284,
DOI
|
11 |
Becklin KM, Anderson JT, Gerhart LM, Wadgymar SM, Wessinger CA, Ward JK. Examining plant physiological responses to climate change through an evolutionary lens. Plant Phys, 2016, 172: 00793
|
12 |
Beek EG (1991) Spatial interpolation of daily meteorological data. In: Theoretical evaluation of available techniques. Report 53.1. Wageningen, The Netherlands. DLO Winand Staring Centre
|
13 |
Berg P, Christensen OB, Klehmet K, Lenderink G, Olsson J, Teichmann C, Yang W. Summertime precipitation extremes in a EURO-CORDEX 0.11 ensemble at an hourly resolution. Nat Hazards Earth Syst Sci, 2019, 19(4): 957-971,
DOI
|
14 |
Berihun ML, Tsunekawa A, Haregeweyn N, Dile YT, Tsubo M, Fenta AA, Meshesha DT, Ebabu K, Sultan D, Srinivasan R. Evaluating runoff and sediment responses to soil and water conservation practices by employing alternative modeling approaches. Sci Total Environ, 2020, 747: 141118,
DOI
|
15 |
Beven K, Freer J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol, 2001, 249(1–4): 11-29,
DOI
|
16 |
Beven KJ, Binley AM. The future of distributed models: model calibration and uncertainty prediction. Hydrol Process, 1992, 6: 279-298,
DOI
|
17 |
Boisvenue C, Running SW. Impacts of climate change on natural forest productivity-evidence since the middle of the 20th century. Glo Chan Biol, 2006, 12(5): 862-882,
DOI
|
18 |
Booth TH. Eucalypt plantations and climate change. For Ecol Manag, 2013, 301: 28-34,
DOI
|
19 |
Booth TH, Broadhurst LM, Pinkard E, Prober SM, Dillon SK, Bush D, Young AG. Native forests and climate change: lessons from eucalypts. For Eco Manag, 2015, 347: 18-29
|
20 |
Brouziyne Y, Abouabdillah A, Hirich A, Bouabid R, Zaaboul R, Benaabidate L. Modeling sustainable adaptation strategies toward a climate-smart agriculture in a mediterranean watershed under projected climate change scenarios. Agric Syst, 2018, 162: 154-163,
DOI
|
21 |
Butcher JB, Johnson TE, Nover D, Sarkar S. Incorporating the effects of increased atmospheric CO2 in watershed model projections of climate change impacts. J Hydrol, 2014, 513: 322-334,
DOI
|
22 |
CARD (2021) SWAT Literature Database for Peer-Reviewed Journal Articles; Center for Agricultural and Rural Development, Iowa State University: Ames, IA, USA, 2019. [accessed on 1.12.2021]. https://www.card.iastate.edu/swat_articles/
|
23 |
Cardoso JVJC. A Classificação dos Solos de Portugal–nova versão. Boletim De Solos (SROA), 1974, 17: 14-46
|
24 |
Chen Y, Marek GW, Marek TH, Moorhead JE, Heflin KR, Brauer DK, Srinivasan R. Simulating the impacts of climate change on hydrology and crop production in the Northern High Plains of Texas using an improved SWAT model. Agric Water Manag, 2019, 22: 13-24,
DOI
|
25 |
Dias R, Araújo A, Terrinha P, Kullberg JC (2013) Geologia de Portugal. Volume II Geologia Meso-cenozóica de Portugal. Escolar Editora, Lisboa, pp 798 (in Portuguese)
|
52 |
Di Luzio MD, Srinivasan R, Arnold JG, Neitsch SL (2002) Soil and water assessment tool-ArcView GIS interface manual-version 2000. Grassland, Soil and Water Research Laboratory, Agricultural Research Service and Blackland Research Center, Texas Agricultural Experiment Station, Temple
|
26 |
Earls J, Dixon B. A comparison of SWAT model-predicted potential evapotranspiration using real and modeled meteorological data. Vad Zon J, 2008, 7(2): 570-580,
DOI
|
27 |
Ercan MB, Maghami I, Bowes BD, Morsy MM, Goodall JL. Estimating potential climate change effects on the upper neuse watershed water balance using the SWAT model. JAWRA J Am Water Resour Assoc, 2019, 56(1): 53-67,
DOI
|
28 |
FAO–UNESCO. Soil map of the world. Vol. I - Legend, 1974 Paris UNESCO
|
29 |
FAO–UNESCO (1988) Soil map of the world. Revised legend. World soil resources report no. 60. Rome, pp 59
|
30 |
Galleguillos M, Gimeno F, Puelma C, Zambrano-Bigiarini M, Lara A, Rojas M. Disentangling the effect of future land use strategies and climate change on streamflow in a Mediterranean catchment dominated by tree plantations. J Hydrol, 2021, 595: 126047,
DOI
|
31 |
Gleick P, Chalecki EL. The impacts of climatic changes for water resources of the Colorado and Sacramento-San Joaquin River Basins. J Am Water Resour Assoc, 1999, 35: 1429-1441,
DOI
|
32 |
Gonçalves F, Zbyzewski G, Carvalhosa A, Coelho AP (1979) Notícia explicativa da Carta Geológica de Portugal na escala 1/50 000, Folha 27-D. Serviços Geológicos de Portugal, Lisboa, p 75 (in Portuguese)
|
33 |
Gray SB, Brady SM. Plant developmental responses to climate change. Dev Biol, 2016, 419(1): 64-77,
DOI
|
34 |
Gupta HV, Sorooshian S, Yapo PO. Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrol Eng, 1999, 4(2): 135-143,
DOI
|
35 |
Haberlandt U. From hydrological modelling to decision support. Adv Geosci, 2010, 27: 11-19,
DOI
|
36 |
Haerter JO, Hagemann S, Moseley C, Piani C. Climate model bias correction and the role of timescales. Hydrol Earth Syst Sci, 2011, 15: 1065-1079,
DOI
|
37 |
Hagemann S, Chen C, Clark DB, Folwell S, Gosling SN, Haddeland I, Hanasaki N, Heinke J, Ludwig F, Voss F, Wiltshire AJ. Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst Dyn, 2013, 4: 129-144,
DOI
|
38 |
Hargreaves GH, Samani ZA. Reference crop evapotranspiration from temperature. Appl Eng Agric, 1985, 1(2): 96-99,
DOI
|
39 |
Holthuijzen MF, Beckage B, Clemins PJ, Higdon D, Winter JM. Constructing high-resolution, bias-corrected climate products: a comparison of methods. J Appl Meteorol Clim, 2021, 60(4): 455-475,
DOI
|
40 |
IFN6 (2019) 6º Inventário Florestal Nacional. Instituto da Conservação da Natureza e das Florestas, 2019 (in Portuguese)
|
41 |
Islam A, Ahuja L, Garcia L, Ma L, Saseendran A. Modeling the effect of elevated CO2 and climate change on reference evapotranspiration in the semi-arid central great plains. T ASABE, 2012, 55(6): 2135-2146,
DOI
|
42 |
Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana JF, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change, 2014, 14: 563-578,
DOI
|
43 |
Jha MK, Gassman PW, Panagopoulos Y. Regional changes in nitrate loadings in the upper mississippi river basin under predicted mid-century climate. Reg Environ Change, 2013, 15(3): 449-460,
DOI
|
44 |
Kamali B, Houshmand Kouchi D, Yang H, Abbaspour KC. Multilevel drought hazard assessment under climate change scenarios in semi-arid regions—a case study of the Karkheh River Basin in Iran. Water, 2017, 9: 241,
DOI
|
45 |
Keenan RJ. Climate change impacts and adaptation in forest management: a review. Ann for Sci, 2015, 72(2): 145-167,
DOI
|
46 |
Kjellström E, Bärring L, Nikulin G, Nilsson C, Persson G, Strandberg G. Production and use of regional climate model projections–a Swedish perspective on building climate services. Clim Serv, 2016, 2: 15-29,
DOI
|
47 |
Köppen W. Grundriss der Klimakunde, 1931 Berlin Walter de Gruyter 388
|
48 |
Krause P, Boyle D, Bäse P. Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci, 2005, 5: 89-97F,
DOI
|
49 |
Landgren OA, Haugen JE, Førland EJ. Evaluation of regional climate model temperature and precipitation outputs over Scandinavia. Clim Res, 2014, 60(3): 249-264,
DOI
|
50 |
Leta OT, El-Kadi AI, Dulai H, Ghazal KA. Assessment of climate change impacts on water balance components of Heeia watershed in Hawaii. J Hydrol Reg Stud, 2016, 8: 182-197,
DOI
|
51 |
Lima WP. The hydrology of eucalypt forests in Australia. IPEF (piracicaba), 1984, 28: 11-32
|
53 |
Mami A, Raimonet M, Yebdri D, Sauvage S, Zettam A, Perez JMS. Future climatic and hydrologic changes estimated by bias-adjusted regional climate model outputs of the Cordex-Africa project: case of the Tafna basin (North-Western Africa). Int J Glob Warm, 2021, 23(1): 58-90,
DOI
|
54 |
Maraun D, Shepherd TG, Widmann M, Zappa G, Walton D, MearnsLO GJM. Towards process-informed bias correction of climate change simulations. Nat Clim Chan, 2017, 7(11): 664-773
|
55 |
Marin M, Clinciu I, Tudose NC, Ungurean C, Adorjani A, Mihalache AL, Cacovean H. Assessing the vulnerability of water resources in the context of climate changes in a small forested watershed using SWAT: a review. Environ Res, 2020, 184: 109330,
DOI
|
56 |
Martínez-Salvador A, Millares A, Eekhout JPC, Conesa-García C. Assessment of streamflow from EURO-CORDEX regional climate simulations in semi-arid catchments using the SWAT model. Sustai, 2021, 13: 7120,
DOI
|
57 |
Matias MJ, Marques JM, Figueiredo P, Basto MJ, Abreu MM, Carreira PM, Ribeiro C, Flambo A, Feliciano J, Vicente EM. Assessment of pollution risk ascribed to santa margarida military camp activities (Portugal). Environ Geol, 2008, 56(6): 1227-1235,
DOI
|
58 |
McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scale. In: Proceedings of the eighth conference on applied climatology. American Meteorological Society, Anaheim, pp 179–184
|
59 |
Mehdi B, Ludwig R, Lehner B. Evaluating the impacts of climate change and crop land use change on streamflow, nitrates and phosphorus: a modeling study in Bavaria. J Hydrol Reg Stud, 2015, 4: 60-90,
DOI
|
60 |
Morais J (1959) Divisão climática de Portugal. In: Memórias e Notícias; Publicações do Museu Mineralógico e Geológico da Universidade de Coimbra: Coimbra, Portugal, p 27 (in Portuguese)
|
61 |
Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE, 2007, 50(3): 885-900,
DOI
|
62 |
Moriasi DN, Gitau MW, Pai N, Daggupati P. Hydrologic and water quality models: performance measures and evaluation criteria. Trans ASABE, 2015, 58(6): 1763-1785,
DOI
|
63 |
Morison J. Zeiger E, Farquhar G, Cowan I. Intercellular CO2 concentration and stomatal response to CO2. Stomatal function, 1987 Stanford Stanford University Press 229-252
|
64 |
Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW (2002) Soil and water assessment tool theoretical documentation, version 2000. Temple, Blackland Research Center, Texas Agricultural Experiment Station, Texas 2001
|
65 |
Nilawar AP, Waikar ML. Use of SWAT to determine the efects of climate and land use changes on streamfow and sediment concentration in the purna river basin India. Environ Earth Sci, 2018, 77: 783,
DOI
|
66 |
Nunes JP, Jacinto R, Keizer JJ. Combined impacts of climate and socio economic scenarios on irrigation water availability for a dry Mediterranean reservoir. Sci Total Environ, 2017, 584(c): 219-233,
DOI
|
67 |
Nunes JP, Seixas J, Keizer JJ. Modeling the response of within-storm runoff and erosion dynamics to climate change in two Mediterranean watersheds: a multi-model, multi-scale approach to scenario design and analysis. CATENA, 2013, 102: 27-39,
DOI
|
68 |
Nunes JP, Seixas J, Pacheco NR. Vulnerability of water resources, vegetation productivity and soil erosion to climate change in Mediterranean watersheds. Hydrol Processes, 2008, 22: 3115-3134,
DOI
|
69 |
Olivier JGJ, Peters JAHW. Trends in global CO2 and total greenhouse gas emissions: 2020 report, 2020 The Hague PBL Netherlands Environmental Assessment Agency
|
70 |
Palma JH, Hakamada R, Moreira GG, Nobre S, Rodriguez LCE. Using 3PG to assess climate change impacts on management plan optimization of eucalyptus plantations. A case study in southern Brazil. Sci Rep, 2021, 11(1): 1-8,
DOI
|
71 |
Penman HL. Natural evaporation from open water, bare soil and grass. Proc R Soc Lond Ser A Math Phys Sci, 1948, 193(1032): 120-145
|
72 |
Priestley CHB, Taylor RJ. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev, 1972, 100(2): 81-92,
DOI
|
73 |
Quansah JE, Naliaka AB, Fall S, Ankumah R, Afandi GE. Assessing future impacts of climate change on streamflow within the alabama river basin. Climate, 2021, 9(4): 55,
DOI
|
74 |
|
75 |
Reis RMM, Gonçalves MZ (1987) Caracterização climática da Região do Alentejo. O Clima de Portugal. Fascículo XXXIV. INMG. Lisboa (in Portuguese)
|
76 |
Roberts S, Vertessy R, Grayson R. Transpiration from Eucalyptus sieberi (L. Johnson) forests of different age. For Ecol Manag, 2001, 143(1–3): 153-161,
DOI
|
77 |
Rocha J, Carvalho-Santos C, Diogo P, Beça P, Keizer JJ, Nunes JP. Impacts of climate change on reservoir water availability, quality and irrigation needs in a water scarce Mediterranean region (southern Portugal). Sci Total Environ, 2020, 736: 139477,
DOI
|
78 |
Rocha J, Duarte A, Silva M, Fabres S, Vasques J, Revilla-Romero B, Quintela A. The importance of high resolution digital elevation models for improved hydrological simulations of a Mediterranean forested catchment. Rem Sens, 2020, 12(20): 3287,
DOI
|
79 |
Rocha J, Roebeling P, Rial-Rivas ME. Assessing the impacts of sustainable agricultural practices for water quality improvements in the vouga catchment (Portugal) using the SWAT model. Sci Total Environ, 2015, 536: 48-58,
DOI
|
80 |
Rodrigues A, Pita G, Mateus J, Kurz-Besson C, Casquilho M, Cerasoli S, Pereira J. Eight years of continuous carbon fluxes measurements in a Portuguese eucalypt stand under two main events: drought and felling. Agric for Meteorol, 2011, 151(4): 493-507,
DOI
|
81 |
Rouholahnejad Freund E, Abbaspour K, Lehmann A. Water resources of the black sea catchment under future climate and landuse change projections. Water, 2017, 9(8): 598,
DOI
|
82 |
Santos JYG, Montenegro SMGL, da Silva RM, Santos CAG, Quinn NW, Dantas APX, Ribeiro NA. Modeling the impacts of future LULC and climate change on runoff and sediment yield in a strategic basin in the caatinga/atlantic forest ecotone of Brazil. CATENA, 2021, 203: 105308,
DOI
|
83 |
Seaton S, Matusick G, Ruthrof KX, Hardy GESJ. Outbreak of Phoracantha semipunctata in response to severe drought in a Mediterranean eucalyptus forest. Forests, 2015, 6(11): 3868-3881,
DOI
|
84 |
Serpa D, Nunes JP, Keizer JJ, Abrantes N. Impacts of climate and land use changes on the water quality of a small Mediterranean catchment with intensive viticulture. Environ Pollut, 2017, 224: 454-465,
DOI
|
85 |
Serpa D, Nunes JP, Santos J, Sampaio E, Jacinto R, Veiga S, Lima JC, Moreira M, Corte-Real J, Keizer JJ, Abrantes N. Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments. Sci Total Environ, 2015, 538: 64-77,
DOI
|
86 |
Shrestha M, Acharya SC, Shrestha PK. Bias correction of climate models for hydrological modelling—are simple methods still useful?. Meteorol Appl, 2017, 24: 531-539,
DOI
|
87 |
|
88 |
Soares JV, Almeida AC. Modeling the water balance and soil water fluxes in a fast-growing eucalyptus plantation in Brazil. J Hydrol, 2001, 253: 130-147,
DOI
|
89 |
SROA (1970) Carta dos Solos de Portugal. I Vol: Classificação e Caracterização Morfológica dos Solos. Ministério da Economia, Secretaria de Estado da Agricultura, Serviço de Reconhecimento e Ordenamento Agrário, Vl, I, 6ª Edição (in Portuguese)
|
90 |
Tan GR, Ayugi B, Ngoma H, Ongoma V. Projections of future meteorological drought events under representative concentration pathways (RCPs) of CMIP5 over Kenya. East Africa Atmos Res, 2020, 246: 105112,
DOI
|
91 |
Tan YG, Guzman SM, Dong ZC, Tan L. Selection of effective GCM bias correction methods and evaluation of hydrological response under future climate scenarios. Climate, 2020, 8(10): 108,
DOI
|
92 |
Taylor KE, Stouffer RJ, Meehl GA. An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc, 2012, 93: 485-498,
DOI
|
93 |
Teshager AD, Gassman PW, Schoof JT, Secchi S. Assessment of impacts of agricultural and climate change scenarios on watershed water quantity and quality, and crop production. Hydrol Earth Syst Sci, 2016, 20(8): 3325-3342,
DOI
|
94 |
Teutschbein C, Seibert J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol, 2012, 456–457: 12-29,
DOI
|
95 |
Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Edmonds JA. RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Change, 2011, 109(1–2): 77-94,
DOI
|
96 |
Thornthwaite CW. An approach toward a rational classification of climate. Geogr Rev, 1948, 38: 55-94,
DOI
|
97 |
van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Rose SK. The representative concentration pathways: an overview. Clim Change, 2011, 109(1–2): 5-31,
DOI
|
98 |
Vautard R, Kadygrov N, Iles C, Boberg F, Buonomo E, Bülow K, Wulfmeyer V (2021) Evaluation of the large EURO‐CORDEX regional climate model ensemble. J Geophys Res 126(17):e2019JD032344
|
99 |
Wang X, Williams JR, Gassman PW, Baffaut C, Izaurralde RC, Jeonginiry JJR. EPIC and APEX: model use, calibration, and validation. Trans ASABE, 2012, 55(4): 1447-1462,
DOI
|
100 |
Williams JR, Jones CA, Dyke PT. A modeling approach to determining the relationship between erosion and soil productivity. Trans Am Soc Agric Eng, 1984, 27: 129-144,
DOI
|
101 |
Williams JR, Nearing MA, Nicks A, Skidmore E, Valentine C, King K, Savabi R. Using soil erosion models for global change studies. J Soil Water Conserv, 1996, 51(5): 381-385
|
102 |
Woldesenbet TA, Elagib NA, Ribbe L, Heinrich J. Catchment response to climate and land use changes in the upper blue nile sub-basins, Ethiopia. Sci Total Environ, 2018, 644: 193-206,
DOI
|
103 |
Wu HJ, Chen B. Evaluating uncertainty estimates in distributed hydrological modeling for the wenjing river watershed in China by GLUE, SUFI-2, and ParaSol methods. Ecol Eng, 2015, 76: 110-112,
DOI
|
104 |
Yang J, Reichert P, Abbaspour KC, Xia J, Yang H. Comparing uncertainty analysis techniques for a SWAT application to the chaohe basin in China. J Hydrol, 2008, 358(1–2): 1-23,
DOI
|