1 |
Abujabhah IS, Doyle RB, Bound SA, Bowman JP. Assessment of bacterial community composition, methanotrophic and nitrogen-cycling bacteria in three soils with different biochar application rates. J Soils Sediments, 2017, 18(1): 148-158,
DOI
|
2 |
Adamczyk S, Adamczyk B, Kitunen V, Smolander A. Monoterpenes and higher terpenes may inhibit enzyme activities in boreal forest soil. Soil Biol Biochem, 2015, 87: 59-66,
DOI
|
3 |
Adamczyk B, Karonen M, Adamczyk S, Engström MT, Laakso T, Saranpää P, Kitunen V, Smolander A, Simon J. Tannins can slow-down but also speed-up soil enzymatic activity in boreal forest. Soil Biol Biochem, 2017, 107: 60-67,
DOI
|
4 |
Anders E, Watzinger A, Rempt F, Kitzler B, Wimmer B, Zehetner F, Stahr K, Zechmeister-Boltenstern S, Soja G. Biochar affects the structure rather than the total biomass of microbial communities in temperate soils. Agric Food Sci, 2013, 22(4): 404-423,
DOI
|
5 |
Anderson MJ, Gorley RN, Clarke KR. PERMANOVA+ for PRIMER: guide to software and statistical methods, 2008 Plymouth PRIMER-E
|
6 |
Barberan A, McGuire KL, Wolf JA, Jones FA, Wright SJ, Turner BL, Essene A, Hubbell SP, Faircloth BC, Fierer N. Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest. Ecol Lett, 2015, 18(12): 1397-1405,
DOI
|
7 |
Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature, 2014, 515(7528): 505-511,
DOI
|
8 |
Bruckman VJ, Varol EA, Uzun BB, Liu J. Bruckman VJ. Biochar in the view of climate change mitigation: the FOREBIOM experience. Biochar: a regional supply chain approach in view of climate change mitigation, 2016 1 Cambridge Cambridge University Press 1-22,
DOI
|
9 |
Cajander AK. Forest types and their significance. Acta for Fenn, 1949, 56: 71,
DOI
|
10 |
Chao A. Non-parametric estimation of the classes in a population. Scand J Stat, 1984, 11(4): 265-270
|
11 |
Clough TJ, Condron LM. Biochar and the nitrogen cycle: introduction. J Environ Qual, 2010, 39(4): 1218-2122,
DOI
|
12 |
Cole EJ, Zandvakili OR, Blanchard J, Xing B, Hashemi M, Etemadi F. Investigating responses of soil bacterial community composition to hardwood biochar amendment using high-throughput PCR sequencing. Appl Soil Ecol, 2019, 136: 80-85,
DOI
|
13 |
Domene X, Mattana S, Hanley K, Enders A, Lehmann J. Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biol Biochem, 2014, 72: 152-162,
DOI
|
14 |
Fan S, Zuo J, Dong H. Changes in soil properties and bacterial community composition with biochar amendment after six years. Agronomy, 2020, 10(5): 746,
DOI
|
15 |
Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology, 2007, 88(6): 1354-1364,
DOI
|
16 |
Hart S, Luckai N, Brando P. Charcoal function and management in boreal ecosystems. J Appl Ecol, 2013, 50(5): 1197-1206,
DOI
|
17 |
Hayat R, Ali S, Amara U, Khalid R, Ahmed I. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol, 2010, 60(4): 579-598,
DOI
|
18 |
Haynes RJ, Swift RS. Stability of soil aggregates in relation to organic constituents and soil water content. J Soil Sci, 1990, 41(1): 73-83,
DOI
|
19 |
He Y, Zhou X, Jiang L, Li M, Du Z, Zhou G, Shao J, Wang X, Xu Z, Hosseini Bai S, Wallace H, Xu C. Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy, 2017, 9(4): 743-755,
DOI
|
20 |
Hossain MZ, Bahar MM, Sarkar B, Donne SW, Ok YS, Palansooriya KN, Kirkham MB, Chowdhury S, Bolan N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2020, 2(4): 379-420,
DOI
|
21 |
Jenkins JR, Viger M, Arnold EC, Harris ZM, Ventura M, Miglietta F, Girardin C, Edwards RJ, Rumpel C, Fornasier F, Zavalloni C, Tonon G, Alberti G, Taylor G. Biochar alters the soil microbiome and soil function: results of next-generation amplicon sequencing across Europe. GCB Bioenergy, 2017, 9(3): 591-612,
DOI
|
22 |
Jiang X, Denef K, Stewart CE, Cotrufo MF. Controls and dynamics of biochar decomposition and soil microbial abundance, composition, and carbon use efficiency during long-term biochar-amended soil incubations. Biol Fertil Soils, 2015, 52(1): 1-14,
DOI
|
23 |
Kalam S, Basu A, Ahmad I, Sayyed RZ, El-Enshasy HA, Dailin DJ, Suriani NL. Recent understanding of soil Acidobacteria and their ecological significance: a critical review. Front Microbiol, 2020,
DOI
|
24 |
Khodadad CLM, Zimmerman AR, Green SJ, Uthandi S, Foster JS. Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol Biochem, 2011, 43(2): 385-392,
DOI
|
25 |
Kolb SE, Fermanich KJ, Dornbush ME. Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci Soc Am J, 2009, 73(4): 1173-1181,
DOI
|
26 |
Kolton M, Meller Harel Y, Pasternak Z, Graber ER, Elad Y, Cytryn E. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl Environ Microbiol, 2011, 77(14): 4924-4930,
DOI
|
27 |
Kuzyakov Y, Bogomolova I, Glaser B. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol Biochem, 2014, 70: 229-236,
DOI
|
28 |
Lehmann J. Bio-energy in the black. Front Ecol Environ, 2007, 5(7): 381-387,
DOI
|
29 |
Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. Biochar effects on soil biota—a review. Soil Biol Biochem, 2011, 43(9): 1812-1836,
DOI
|
30 |
Li Y, Hu S, Chen J, Müller K, Li Y, Fu W, Lin Z, Wang H. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. J Soils Sediments, 2017, 18(2): 546-563,
DOI
|
31 |
Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizão FJ, Petersen J, Neves EG. Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J, 2006, 70(5): 1719-1730,
DOI
|
32 |
Louca S, Parfrey LW, Doebeli MJS. Decoupling function and taxonomy in the global ocean microbiome. Science, 2016, 353(6305): 1272-1277,
DOI
|
33 |
Luo Y, Durenkamp M, De Nobili M, Lin Q, Devonshire BJ, Brookes PC. Microbial biomass growth, following incorporation of biochars produced at 350 °C or 700 °C, in a silty-clay loam soil of high and low pH. Soil Biol Biochem, 2013, 57: 513-523,
DOI
|
34 |
Mitchell PJ, Simpson AJ, Soong R, Simpson MJ. Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil. Soil Biol Biochem, 2015, 81: 244-254,
DOI
|
35 |
Moody PW, Yo SA, Aitken RL. Soil organic carbon, permanganate fractions, and the chemical properties of acidic soils. Soil Res, 1997, 35(6): 1301-1308,
DOI
|
36 |
Needleman SB. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol, 1970, 48(3): 443-453,
DOI
|
37 |
Nelson DW, Sommers LE. Total carbon, organic carbon, and organic matter. Methods of soil analysis: part 2 chemical and microbiological properties, 1996 Wahington ASA 539-579
|
38 |
Nguyen TTN, Wallace HM, Xu CY, Van Zwieten L, Weng ZH, Xu Z, Che R, Tahmasbian I, Hu HW, Bai SH. The effects of short term, long term and reapplication of biochar on soil bacteria. Sci Total Environ, 2018, 636: 142-151,
DOI
|
39 |
Nielsen S, Minchin T, Kimber S, van Zwieten L, Gilbert J, Munroe P, Joseph S, Thomas T. Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers. Agric Ecosyst Environ, 2014, 191: 73-82,
DOI
|
40 |
Noyce GL, Basiliko N, Fulthorpe R, Sackett TE, Thomas SC. Soil microbial responses over 2 years following biochar addition to a north temperate forest. Biol Fertil Soils, 2015, 51(6): 649-659,
DOI
|
41 |
Ogawa M, Okimori Y, Takahashi F. Carbon sequestration by carbonization of biomass and forestation: three case studies. Mitig Adapt Strateg Glob Change, 2006, 11(2): 429-444,
DOI
|
42 |
Ohlson M, Dahlberg B, Økland T, Brown KJ, Halvorsen R. The charcoal carbon pool in boreal forest soils. Nat Geosci, 2009, 2(10): 692-695,
DOI
|
43 |
Palansooriya KN, Wong JTF, Hashimoto Y, Huang L, Rinklebe J, Chang SX, Bolan N, Wang H, Ok YS. Response of microbial communities to biochar-amended soils: a critical review. Biochar, 2019, 1(1): 3-22,
DOI
|
44 |
Palviainen M, Berninger F, Bruckman VJ, Köster K, de Assumpção CRM, Aaltonen H, Makita N, Mishra A, Kulmala L, Adamczyk B, Zhou X, Heinonsalo J, Köster E, Pumpanen J. Effects of biochar on carbon and nitrogen fluxes in boreal forest soil. Plant Soil, 2018, 425(1): 71-85,
DOI
|
45 |
Prayogo C, Jones JE, Baeyens J, Bending GD. Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol Fertil Soils, 2013, 50(4): 695-702,
DOI
|
46 |
Ralebitso-Senior TK, Orr CH. Microbial ecology analysis of biochar-augmented soils: setting the scene. Biochar application, 2016 Amsterdam Elsevier 1-40
|
47 |
Reed SC, Cleveland CC, Townsend AR. Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst, 2011, 42: 489-512,
DOI
|
48 |
Rutherford PM, McGill WB, Arocena JM, Figueiredo CT. Total nitrogen. Soil Sampl Methods Anal, 2007, 9: 239-241
|
49 |
Sackett TE, Basiliko N, Noyce GL, Winsborough C, Schurman J, Ikeda C, Thomas SC. Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest. GCB Bioenergy, 2015, 7(5): 1062-1074,
DOI
|
50 |
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol, 2009, 75(23): 7537-7541,
DOI
|
52 |
Sohi SP, Krull E, Lopez-Capel E, Bol R. A review of biochar and its use and function in soil. Adv Agron, 2010, 105: 47-82,
DOI
|
53 |
Song Y, Li X, Xu M, Jiao W, Bian Y, Yang X, Gu C, Wang F, Jiang X. Does biochar induce similar successions of microbial community structures among different soils?. Bull Environ Contam Toxicol, 2019, 103(4): 642-650,
DOI
|
54 |
Sousa NR, Franco AR, Ramos MA, Oliveira RS, Castro PML. The response of Betula pubescens to inoculation with an ectomycorrhizal fungus and a plant growth promoting bacterium is substrate-dependent. Ecol Eng, 2015, 81: 439-443,
DOI
|
55 |
Sponseller RA, Gundale MJ, Futter M, Ring E, Nordin A, Nasholm T, Laudon H. Nitrogen dynamics in managed boreal forests: recent advances and future research directions. Ambio, 2016, 45(2): 175-187,
DOI
|
56 |
Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U. 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol, 2010, 188(1): 291-301,
DOI
|
57 |
Tian J, Wang J, Dippold M, Gao Y, Blagodatskaya E, Kuzyakov Y. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil. Sci Total Environ, 2016, 556: 89-97,
DOI
|
58 |
Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil, 2009, 327(1): 235-246
|
59 |
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol, 2007, 73(16): 5261-5267,
DOI
|
60 |
Wang J, Xiong Z, Kuzyakov Y. Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy, 2015, 8(3): 512-523,
DOI
|
61 |
Xu N, Tan G, Wang H, Gai X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur J Soil Biol, 2016, 74: 1-8,
DOI
|
62 |
Yao Q, Liu J, Yu Z, Li Y, Jin J, Liu X, Wang G. Changes of bacterial community compositions after three years of biochar application in a black soil of northeast China. Appl Soil Ecol, 2017, 113: 11-21,
DOI
|
63 |
Zhang L, Zhang H, Wang Z, Chen G, Wang L. Dynamic changes of the dominant functioning microbial community in the compost of a 90-m3 aerobic solid state fermentor revealed by integrated meta-omics. Bioresour Technol, 2016, 203: 1-10,
DOI
|
64 |
Zhao P, Palviainen M, Köster K, Berninger F, Bruckman VJ, Pumpanen J. Effects of biochar on fluxes and turnover of carbon in boreal forest soils. Soil Sci Soc Am J, 2019, 83(1): 126-136,
DOI
|
65 |
Zhu X, Zhu T, Pumpanen J, Palviainen M, Zhou X, Kulmala L, Bruckman VJ, Köster E, Köster K, Aaltonen H, Makita N, Wang Y, Berninger F. Short-term effects of biochar on soil CO2 efflux in boreal Scots pine forests. Ann for Sci, 2020, 77(2): 1-15,
DOI
|