[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]

  • Kobra Shojaeizadeh 1 ,
  • Mahmoud Ahmadi 1, b ,
  • Abbasali Dadashi-Roudbari 2
展开

收稿日期: 2022-11-26

  录用日期: 2023-05-23

  网络出版日期: 2024-10-16

Contribution of biophysical and climate variables to the spatial distribution of wildfires in Iran

  • Kobra Shojaeizadeh 1 ,
  • Mahmoud Ahmadi 1, b ,
  • Abbasali Dadashi-Roudbari 2
Expand
  • 1 Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
  • 2 Department of Geography, Ferdowsi University of Mashhad, Mashhad, Iran

Received date: 2022-11-26

  Accepted date: 2023-05-23

  Online published: 2024-10-16

Copyright

© Northeast Forestry University 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

本文引用格式

Kobra Shojaeizadeh , Mahmoud Ahmadi , Abbasali Dadashi-Roudbari . [J]. 林业研究(英文版), 2023 , 34(6) : 1763 -1775 . DOI: 10.1007/s11676-023-01638-x

Abstract

This study investigated the relationship between climate and biophysical variables in burned areas in Iran. The fire burned area (FBA) product (Fire CCI 5.1.1), land surface temperature (MOD11C3C), vegetation index (MOD13A1), and climate variables such as temperature, wind speed, relative humidity, and volumetric soil moisture from the ERA5 reanalysis dataset were used. Pearson correlation coefficient was used to determine the relationship between biophysical and climate variables and fire occurrence. The results show that FBA increased by 1.7 hectares/decade from 2001 to 2020. The high FBA in 2010 (the black summer of Iran) was due to high temperatures and significant heatwaves that led to extensive wildfires. Although anthropogenic activities are considered a significant cause of wildfires, several variables, including increased temperatures, less precipitation, relative humidity, and wind speed and direction, contribute to the extent and occurrence of wildfires. The country’s FBA hotspot is in the Arasbaran region during the summer season. Temperature and relative humidity are the most significant variables influencing the occurrence of wildfires. The results show the vulnerability of Iran’s forests and their high potential for fires. Considering the frequency of fire occurrences in Iran and the limited equipment, fire prevention plans should be carried out by applying proper management in high-risk regions.

[an error occurred while processing this directive]
1
Aghajani H, Fallah A, Emadian SF. Modelling and analyzing the surface fire behaviour in Hyrcanyan forests of Iran. J for Sci, 2014, 60(9): 353-362,

DOI

2
Aghajani H, Hojjati SM, Tajick-Ghanbari MA, Puormajidian MR, Borhani A. Molecular identification of ectomycorrhizal fungal communities associated with oriental beech trees (Fagus orientalis Lipsky) in Hyrcanyan forests of Iran. Iran J Sci Technol Trans A Sci, 2019, 43(1): 25-32,

DOI

3
Ajin RS, Loghin AM, Jacob MK, Vinod PG, Krishnamurthy RR. The risk assessment study of potential forest fire in Idukki wildlife sanctuary using RS and GIS techniques. Int J Adv Earth Sci Eng, 2016, 5(1): 308-318,

DOI

4
Alexandridis A, Vakalis D, Siettos CI, Bafas GV. A cellular automata model for forest fire spread prediction: the case of the wildfire that swept through Spetses Island in 1990. Appl Math Comput, 2008, 204(1): 191-201,

DOI

5
Arif M, Alghamdi KK, Sahel SA, Alosaimi SO, Alsahaft ME, Alharthi MA, Arif M. Role of machine learning algorithms in forest fire management: a literature review. J Robotics Autom, 2021, 5(1): 212-226,

DOI

6
Arnell NW, Freeman A, Gazzard R. The effect of climate change on indicators of fire danger in the UK. Environ Res Lett, 2021, 16(4): 044027,

DOI

7
Azevedo BF, Brito T, Lima J, Pereira AI. Optimum sensors allocation for a forest fires monitoring system. Forests, 2021, 12(4): 453,

DOI

8
Bar A, Michaletz ST, Mayr S. Fire effects on tree physiology. New Phytol, 2019, 223(4): 1728-1741,

DOI

9
Bisquert M, Caselles E, Sanchez JM, Caselles V. Application of artificial neural networks and logistic regression to the prediction of forest fire danger in Galicia using MODIS data. Int J Wildland Fire, 2012, 21(8): 1025-1029,

DOI

10
Bountzouklis C, Fox DM, Di Bernardino E. Environmental factors affecting wildfire-burned areas in southeastern France, 1970–2019. NHESS, 2022, 22(4): 1181-1200,

DOI

11
Bowman DM, Moreira-Munoz A, Kolden AC, Chavez RO, Munoz AA, Salinas F, Johnston FH. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio, 2019, 48(4): 350-362,

DOI

12
Cascio WE. Wildland fire smoke and human health. Sci Total Environ, 2018, 624: 586-595,

DOI

13
Cheng T, Wang J. Integrated spatio-temporal data mining for forest fire prediction. Trans GIS, 2008, 12(5): 591-611,

DOI

14
Chong C, Huang E, Chen L. Effects of climate change on Canadian forest fires. SFJ, 2017, 3(2): 1-6,

DOI

15
Chuvieco E, Salas J. Mapping the spatial distribution of forest fire danger using GIS. Int J Geogr Inf Sci, 1996, 10(3): 333-345,

DOI

16
Colak E, Sunar F. Evaluation of forest fire risk in the Mediterranean Turkish forests: a case study of Menderes region, Izmir. Int J Disaster Risk Reduct, 2020, 45: 101479,

DOI

17
Cucchi M, Weedon GP, Amici A, Bellouin N, Lange S, Müller Schmied H, Buontempo C. WFDE5: bias-adjusted ERA5 reanalysis data for impact studies. Earth Syst Sci Data, 2020, 12(3): 2097-2120,

DOI

18
Da Rocha MJ, da Silva RG, Juvanhol RS. Forest fire action on vegetation from the perspective of trend analysis in future climate change scenarios for a Brazilian Savanna region. Ecol Eng, 2022, 175: 106488,

DOI

19
Daşdemir I, Aydın F, Ertugrul M. Factors affecting the behavior of large forest fires in Turkey. Environ Manage, 2021, 67(1): 162-175,

DOI

20
Digavinti J, Manikiam B. Satellite monitoring of forest fire impact and regeneration using NDVI and LST. J Appl Remote Sens, 2021, 15(4): 042412,

DOI

22
Duan SB, Li ZL, Tang BH, Wu H, Tang R. Direct estimation of land-surface diurnal temperature cycle model parameters from MSG–SEVIRI brightness temperatures under clear sky conditions. Remote Sens Environ, 2014, 150: 34-43,

DOI

23
Eskandari S, Miesel JR, Pourghasemi HR. The temporal and spatial relationships between climatic parameters and fire occurrence in northeastern Iran. Ecol Indic, 2020, 118: 106720,

DOI

24
Garcia-Llamas P, Suárez-Seoane S, Taboada A, Fernández-Manso A, Quintano C, Fernández-García V, Fernández-Guisuraga JM, Marcos E, Calvo L. Environmental drivers of fire severity in extreme fire events that affect Mediterranean pine forest ecosystems. Forest Ecol Manag, 2019, 433: 24-32,

DOI

25
Gizaw MS, Gan TY. Regional flood frequency analysis using support vector regression under historical and future climate. J Hydrol, 2016, 538: 387-398,

DOI

26
Gonzalez-Olabarria JR, Brotons L, Gritten D, Tudela A, Teres JA. Identifying location and causality of fire ignition hotspots in a Mediterranean region. Int J Wildland Fire, 2012, 21(7): 905-914,

DOI

27
Guha S, Govil H. An assessment on the relationship between land surface temperature and normalized difference vegetation index. Environ Dev Sustain, 2021, 23(2): 1944-1963,

DOI

28
Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 2008, 451(7176): 289-292,

DOI

29
Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A. The ERA5 global reanalysis. Q J R Meteorol Soc, 2020, 146(730): 1999-2204,

DOI

30
Heydari M, Rostamy A, Najafi F, Dey DC. Effect of fire severity on physical and biochemical soil properties in Zagros oak (Quercus brantii Lindl.) forests in Iran. J for Res, 2017, 28(1): 95-104,

DOI

31
Hu T, Zhao B, Li F, Dou X, Hu H, Sun L. Effects of fire on soil respiration and its components in a Dahurian larch (Larix gmelinii) forest in northeast China: implications for forest ecosystem carbon cycling. Geoderma, 2021, 402: 115273,

DOI

32
Hussin YA, Matakala M, Zagdaa N (2008) The applications of remote sensing and GIS in modeling forest fire hazard in Mongolia. In 21st congress of the international society for photogrammetry and remote sensing. p. 289–294

33
Kaewsong K, Johnson DJ, Bunyavejchewin S, Baker PJ. Fire impacts on recruitment dynamics in a seasonal tropical forest in continental southeast Asia. Forests, 2022, 13(1): 116,

DOI

34
Kirchmeier-Young MC, Gillett NP, Zwiers FW, Cannon AJ, Anslow FS. Attribution of the influence of human-induced climate change on an extreme fire season. Earth’s Future, 2019, 7(1): 2-10,

DOI

35
Koutsias N, Xanthopoulos G, Founda D, Xystrakis F, Nioti F, Pleniou M, Mallinis G, Arianoutsou M. On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894–2010). Int J Wildland Fire, 2012, 22(4): 493-507,

DOI

36
Krtalic A, Prodan A, Racetin I (2019) Analysis of burned vegetation recovery by means of vegetation indices In: 19th International multidisciplinary scientific geoconference SGEM. vol. 19(2), p 449–456

37
Kukhar IV, Orlovskiy SN, Martynovsakaya SN (2020) Forest fires environmental impact study. In: IOP conference series: earth and environmental science. vol. 548(5), p 052061. IOP publishing. https://doi.org/10.1088/1755-1315/548/5/052061

38
Lecina-Diaz J, Martínez-Vilalta J, Alvarez A, Vayreda J, Retana J. Assessing the risk of losing forest ecosystem services due to wildfires. Ecosystems, 2021, 24(7): 1687-1701,

DOI

39
Li J, Song Y, Huang X, Li M. Comparison of forest burned areas in mainland China derived from MCD45A1 and data recorded in yearbooks from 2001 to 2011. Int J Wildland Fire, 2014, 24(1): 103-113,

DOI

40
Li R, Fu Y, Bergeron Y, Valeria O, Chavardès RD, Hu J, Wang Y, Duan J, Li D, Cheng Y. Assessing forest fire properties in Northeastern Asia and Southern China with satellite microwave Emissivity Difference Vegetation Index (EDVI). ISPRS J Photogramm Remote Sens, 2022, 183: 54-65,

DOI

41
Li X, Song W, Lian L, Wei X. Forest fire smoke detection using back-propagation neural network based on MODIS data. Remote Sens, 2015, 7(4): 4473-4498,

DOI

42
Liu W, Wang S, Zhou Y, Wang L, Zhang S (2010) Analysis of forest potential fire environment based on GIS and RS. In: 2010 18th International conference on geoinformatics. p. 1–6. IEEE. https://doi.org/10.1109/geoinformatics.2010.5567966

43
Lizundia-Loiola J, Franquesa M, Boettcher M, Kirches G, Pettinari ML, Chuvieco E. Implementation of the burned area component of the copernicus climate change service: from MODIS to OLCI data. Remote Sens, 2021, 13(21): 4295,

DOI

44
Lizundia-Loiola J, Otón G, Ramo R, Chuvieco E. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sens Environ, 2020, 236: 111493,

DOI

45
Maniatis Y, Doganis A, Chatzigeorgiadis M. Fire risk probability mapping using machine learning tools and multi-criteria decision analysis in the GIS environment: a case study in the national park forest Dadia-Lefkimi-Soufli. Greece Appl Sci, 2022, 12(6): 2938,

DOI

46
Marvie Mohadjer MR. Silviculture, 2011 Tehran (in Persian) University of Tehran press

47
Mateus P, Fernandes PM. Forest fires in Portugal: dynamics, causes and policies. Forest context and policies in Portugal: present and future challenges, 2014 Charm Springer 97-115,

DOI

48
Mazzeo G, Marchese F, Filizzola C, Pergola N, Tramutoli V (2007) A multi-temporal robust satellite technique (RST) for forest fire detection. In: 2007 International workshop on the analysis of multi-temporal remote sensing images.p 1–6. https://doi.org/10.1109/multitemp.2007.4293060

49
Mofidi A, Soltanzadeh I, Yousefi Y, Zarrin A, Soltani M, Masoompour Samakosh J, Miller ST. Modeling the exceptional south Foehn event (Garmij) over the Alborz Mountains during the extreme forest fire of December 2005. Nat Hazards, 2015, 75(3): 2489-2518,

DOI

50
Ozupekce S. Use of land surface temperature (LST) data in the determination of high areas of forest fire in erdemli district. Int J Soc Sci Res, 2018, 11(57): 227-232,

DOI

51
Palandjian D, Gitas IZ, Wright R. Burned area mapping and post-fire impact assessment in the Kassandra peninsula (Greece) using Landsat TM and Quickbird data. Geocarto Int, 2009, 24(3): 193-205,

DOI

52
Pastor E, Zárate L, Planas E, Arnaldos J. Mathematical models and calculation systems for the study of wildland fire behaviour. Prog Energy Combust Sci, 2003, 29(2): 139-153,

DOI

53
Pimont F, Parsons R, Rigolot E, de Coligny F, Dupuy JL, Dreyfus P, Linn RR. Modeling fuels and fire effects in 3D: model description and applications. Environ Model Softw, 2016, 80: 225-244,

DOI

54
Podur J, Martell DL, Knight K. Statistical quality control analysis of forest fire activity in Canada. Can J Forest Res, 2002, 32(2): 195-205,

DOI

55
Progias P, Sirakoulis GC. An FPGA processor for modelling wildfire spreading. Math Comput Model, 2013, 57(5–6): 1436-1452,

DOI

56
Quintano C, Fernández-Manso A, Fernández-Manso O. Combination of landsat and sentinel-2 MSI data for initial assessing of burn severity. Int J Appl Earth Obs Geoinf, 2018, 64: 221-225,

DOI

57
Rasul A, Ibrahim GRF, Hameed HM, Tansey K. A trend of increasing burned areas in Iraq from 2001 to 2019. Environ Dev Sustain, 2021, 23(4): 5739-5755,

DOI

58
Romeiro JMN, Eid T, Antón-Fernández C, Kangas A, Trømborg E. Natural disturbances risks in European Boreal and temperate forests and their links to climate change–a review of modelling approaches. Forest Ecol Manag, 2022, 509: 120071,

DOI

59
Ryu JH, Han KS, Hong S, Park NW, Lee YW, Cho J. Satellite-based evaluation of the post-fire recovery process from the worst forest fire case in south Korea. Remote Sens, 2018, 10(6): 918,

DOI

60
Sachdeva S, Bhatia T, Verma A. GIS-based evolutionary optimized gradient boosted decision trees for forest fire susceptibility mapping. Nat Hazards, 2018, 92(3): 1399-1418,

DOI

61
Saidi S, Younes AB, Anselme B. A GIS-remote sensing approach for forest fire risk assessment: case of Bizerte region. Tunis Appl Geomat, 2021, 13(4): 587-603,

DOI

62
Singh M, Huang Z. Analysis of forest fire dynamics, distribution and main drivers in the Atlantic Forest. Sustainability, 2022, 14(2): 992,

DOI

63
Sivrikaya F, Kuçuk O. Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region. Ecol Inform, 2022, 68: 101537,

DOI

64
Souza CM, Roberts D. Mapping forest degradation in the Amazon region with Ikonos images. Int J Remote Sens, 2005, 26(3): 425-429,

DOI

65
Soydan O. Determination of forest fire risk using GIS: a case study in Nigde Turkey. Bartın Orman Fakültesi Dergisi, 2022, 24(1): 77-94,

DOI

66
Tansey K, Grégoire JM, Defourny P, Leigh R, Pekel JF, Van Bogaert E, Bartholomé E. A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution. Geophys Res Lett, 2008, 35(1): 1-6,

DOI

67
Tarek M, Brissette FP, Arsenault R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrol Earth Syst Sci, 2020, 24(5): 2527-2544,

DOI

68
Tariq A, Shu H, Siddiqui S, Mousa BG, Munir I, Nasri A, Baqa MF. Forest fire monitoring using spatial-statistical and geo-spatial analysis of factors determining forest fire in margalla Hills, Islamabad. Pak Geomat Nat Hazards Risk, 2021, 12(1): 1212-1233,

DOI

69
Teodoro A, Amaral A. A statistical and spatial analysis of Portuguese forest fires in summer 2016 considering landsat 8 and sentinel 2A data. Environments, 2019, 6(3): 36,

DOI

70
Tosic I, Mladjan D, Gavrilov MB, Živanović S, Radaković MG, Putniković S, Marković SB. Potential influence of meteorological variables on forest fire risk in Serbia during the period 2000–2017. Open Geosciences, 2019, 11(1): 414-425,

DOI

71
Wang J, Wang G, Qi J, Liu Y, Zhang W (2021) research of forest fire points detection method based on MODIS active fire product. In: 2021 28th International conference on geoinformatics. p 1–5. https://doi.org/10.1109/ieeeconf54055.2021.9687646

72
Wang SD, Miao LL, Peng GX. An improved algorithm for forest fire detection using HJ data. Procedia Environ Sci, 2012, 13: 140-150,

DOI

73
Wardlow BD, Egbert SL, Kastens JH. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US central great plains. Remote Sens Environ, 2007, 108(3): 290-310,

DOI

74
Weng Q, Fu P, Gao F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens Environ, 2014, 145: 55-67,

DOI

75
Witte JC, Douglass AR, Da Silva A, Torres O, Levy R, Duncan BN. NASA A-train and terra observations of the 2010 Russian wildfires. Atmos Chem Phys, 2011, 11(17): 9287-9301,

DOI

76
Wu Z, Middleton B, Hetzler R, Vogel J, Dye D. Vegetation burn severity mapping using landsat-8 and worldview-2. Photogramm Eng Remote Sensing, 2015, 81(2): 143-154,

DOI

21
Xu D, Dai LM, Shao GF, Tang L, Wang H. Forest fire risk zone mapping from satellite images and GIS for Baihe forestry bureau, Jilin China. J Forestry Res, 2005, 16(3): 169-174,

DOI

77
Yankovich KS, Yankovich EP, Baranovskiy NV. Classification of vegetation to estimate forest fire danger using landsat 8 images: case study. Math Probl Eng, 2019, 2019: 1-14,

DOI

78
Zhang ZX, Zhang HY, Zhou DW. Using GIS spatial analysis and logistic regression to predict the probabilities of human-caused grassland fires. J Arid Environ, 2010, 74(3): 386-393,

DOI

79
Zhao J, Wang L, Hou X, Li G, Tian Q, Chan E, Yue C. Fire regime impacts on postfire diurnal land surface temperature change over north American Boreal forest. J Geophys Res Atmos, 2021, 126(23): e2021JD035589,

DOI

80
Zhu J, Xie A, Qin X, Wang Y, Xu B, Wang Y. An assessment of ERA5 reanalysis for Antarctic near-surface air temperature. Atmosphere, 2021, 12(2): 217,

DOI

Options
文章导航

/

[an error occurred while processing this directive]