1 |
Adame P, del Río M, Cañellas I. A mixed nonlinear height–diameter model for Pyrenean oak (Quercus pyrenaica Willd.). For Ecol Manag, 2008, 256(1–2): 88-98,
DOI
|
2 |
Álvarez González JG, Ruíz González AD, Rodríguez Soalleiro R, Barrio Anta M. Ecoregional site index models for Pinus pinaster in Galicia (Northwestern Spain). Ann for Sci, 2005, 62(2): 115-127,
DOI
|
3 |
Atalay İ. Ecoregions of Turkey, 2014 İzmir Meta Press
|
4 |
Brooks JR, Wiant Jr HV (2005) Evaluating ecoregion-based heightdiameter relationships of five economically important Appalachian hardwood species in West Virginia. In: The Seventh Annual Forest Inventory and Analysis Symposium, 237–242, Washington. https://www.researchgate.net/publication/265026188
|
5 |
Burkhart HE, Strub MR. Fries J. A model for simulation of planted loblolly pine stands. Growth models for tree and stand simulation, 1974 Stockholm Royal College of Forestry
|
6 |
Calama R, Montero G. Interregional nonlinear height–diameter model with random coefficients for stone pine in Spain. Can J for Res, 2004, 34(1): 150-163,
DOI
|
7 |
Canadas N, Garcia C, Montero G. Height-diameter relationship for Pinus pinea L. in the central system. Proc Congr Adm Manage Sustain for, 1999, 1: 139-154
|
8 |
Castedo Dorado F, Barrio Anta M, Parresol BR, Álvarez González JG. A stochastic height-diameter model for maritime pine ecoregions in Galicia (northwestern Spain). Ann for Sci, 2005, 62(5): 455-465,
DOI
|
9 |
Castedo Dorado F, Diéguez-Aranda U, Barrio Anta M, Sánchez Rodríguez M, von Gadow K. A generalized height–diameter model including random components for radiata pine plantations in northwestern Spain. For Ecol Manag, 2006, 229(1–3): 202-213,
DOI
|
10 |
Chenge IB. Height–diameter relationship of trees in Omo strict nature forest reserve Nigeria. Trees for People, 2021, 3: 100051,
DOI
|
11 |
Ciceu A, Garcia-Duro J, Seceleanu I, Badea O. A generalized nonlinear mixed-effects height–diameter model for Norway spruce in mixed-uneven aged stands. For Ecol Manag, 2020, 477: 118507,
DOI
|
12 |
Corral-Rivas S, Álvarez-González J, Crecente-Campo F, Corral-Rivas J. Local and generalized height-diameter models with random parameters for mixed, uneven-aged forests in Northwestern Durango. Mexico for Ecosyst, 2014, 1(1): 6,
DOI
|
13 |
Curtis RO. Height-diameter and height-diameter-age equations for second-growth Douglas-fir. For Sci, 1967, 13(4): 365-375,
DOI
|
14 |
Curtis RO, Clendenan GW, Demars DJ (1981) A new stand simulator for coast 341 Douglas-Fir: DFSIM Users Guide. U. S. Forest Service General Technical Report 342 PNW-1128
|
15 |
Ercanli I. Nonlinear mixed effect models for predicting relationships between total height and diameter of oriental beech trees in Kestel Turkey. Rchscfa XXI, 2015,
DOI
|
16 |
Ercanli I, Eyuboglu D. Comparing mixed effect nonlinear regression and autoregressive nonlinear regression models to resolve the problem of autocorrelation in the relationships between total tree height and diameter at breast height. Anatol J for Res, 2019, 5(1): 17-27 (in Turkish)
|
17 |
Fu LY, Zeng WS, Tang SZ, Sharma RP, Li HK. Using linear mixed model and dummy variable model approaches to construct compatible single-tree biomass equations at different scales—a case study for Masson pine in Southern China. J for Sci, 2012, 58(3): 101-115,
DOI
|
18 |
Huang S. Ecoregion-based individual tree height-diameter models for lodgepole pine in Alberta. West J Appl for, 1999, 14(4): 186-193,
DOI
|
19 |
Huang S, Price D, Titus SJ. Development of ecoregion-based height–diameter models for white spruce in boreal forests. For Ecol Manag, 2000, 129(1–3): 125-141,
DOI
|
20 |
Kearsley E, Moonen PC, Hufkens K, Doetterl S, Lisingo J, Boyemba Bosela F, Boeckx P, Beeckman H, Verbeeck H. Model performance of tree height-diameter relationships in the central Congo Basin. Ann for Sci, 2017, 74(1): 7,
DOI
|
21 |
Klos RJ, Wang GG, Dang QL, East EW. Taper equations for five major commercial tree species in Manitoba. Canada West J Appl for, 2007, 22(3): 163-170,
DOI
|
22 |
Krumland BE, Wensel LC. A generalized height-diameter equation for coastal California species. West J Appl for, 1988, 3(4): 113-115,
DOI
|
23 |
Lappi J. A longitudinal analysis of height/diameter curves. For Sci, 1997, 43(4): 555-570,
DOI
|
24 |
Lei YC, Parresol BR (2001) Remarks on height-diameter modelling. Research Note SRS 10. USDA Forest Service, Southern Research Station, Asheville NC
|
25 |
Lin F, Xie L, Hao Y, Miao Z, Dong L. Comparison of modeling approaches for the Height–diameter relationship: an example with planted Mongolian pine (Pinus sylvestris var. mongolica) trees in Northeast China. Forests, 2022, 13(8): 1168,
DOI
|
26 |
Lindstrom ML, Bates DM. Nonlinear mixed effects models for repeated measures data. Biometrics, 1990, 46(3): 673-687,
DOI
|
27 |
López-Sánchez CA, Gorgoso Varela J, Castedo Dorado F, Rojo Alboreca A, Soalleiro RR, Álvarez González JG, Sánchez Rodríguez F. A height-diameter model for Pinus radiata D. Don in Galicia (Northwest Spain). Ann for Sci, 2003, 60(3): 237-245,
DOI
|
28 |
Magalhães TM. Site-specific height-diameter and stem volume equations for Lebombo-ironwood. Ann for Res, 2017, 60(2): 297-312,
DOI
|
29 |
Mehtätalo L. Forest biometrics with examples in R, 2013 Joensuu University of Eastern Finland School of Computing
|
30 |
Meyer HA. A mathematical expression for height curves. J for, 1940, 38(5): 415-420,
DOI
|
31 |
Mirkovich JL. Normale visinske krive za chrast kitnak I bukvu v NR Srbiji. Zagreb Glasnik Sumarskog Fakulteta, 1958, 13: 43-56
|
32 |
Mısır N. Generalized height-diameter models for Populus tremula L. stands. Afr J Biotechnol, 2010, 9: 4348-4355,
DOI
|
33 |
Neter J, Kutner MH, Nachtsheim CJ, Wasserman W. Applied linear statistical models, 1996 Chicago Richard D. Irwin, Inc
|
34 |
Özçelİk R, Yavuz H, Karatepe Y, Gürlevİk N, Kiriş R. Development of ecoregion-based height–diameter models for 3 economically important tree species of southern Turkey. Turk J Agric for, 2014, 38: 399-412,
DOI
|
35 |
Özçelik R, Çapar C. Antalya yöresi doğal kızılçam meşcereleri için genelleştirilmiş çap-boy modellerinin geliştirilmesi. Turk J for, 2014, 15(1): 44,
DOI
|
36 |
Parresol BR. Baldcypress height–diameter equations and their prediction confidence intervals. Can J for Res, 1992, 22(9): 1429-1434,
DOI
|
37 |
Peng CH, Zhang LJ, Zhou XL, Dang QL, Huang SM. Developing and evaluating tree height-diameter models at three geographic scales for black spruce in Ontario. North J Appl for, 2004, 21(2): 83-92,
DOI
|
38 |
Pienaar LV, Harrison WM, Rheney JW. PMRC yield prediction system for slash pine plantations in the Atlantic coast flatwoods, 1991 Athens Plantation Management Research Cooperative Technical Report
|
39 |
Pillsbury NH, McDonald PM, Simon V. Reliability of tanoak volume equations when applied to different areas. West J Appl for, 1995, 10(2): 72-78,
DOI
|
40 |
Pinheiro JC, Bates DM. Model building for nonlinear mixed effects model, 1998 Madison, Wisconsin, USA Department of Statistics, University of Wisconsin
|
41 |
Pinheiro JC, Bates DM. Mixed-effects models in sand S-PLUS, 2000 New York Springer
|
42 |
|
43 |
Poudel KP, Cao QV. Evaluation of methods to predict weibull parameters for characterizing diameter distributions. For Sci, 2013, 59(2): 243-252,
DOI
|
44 |
R Core Team. R: a language and environment for statistical computing, 2021 Vienna, Austria The R Foundation for Statistical Computing
|
45 |
Richards FJ. A flexible growth function for empirical use. J Exp Bot, 1959, 10(29): 290-301
|
46 |
Saunders MR, Wagner RG. Height-diameter models with random coefficients and site variables for tree species of central Maine. Ann for Sci, 2008, 65(2): 1-10,
DOI
|
47 |
Schnute J. A versatile growth model with statistically stable parameters. Can J Fish Aquat Sci, 1981, 38(9): 1128-1140,
DOI
|
48 |
Seki M, Sakici OE. Ecoregion-based height-diameter models for Crimean pine. J for Res, 2022, 27(1): 36-44,
DOI
|
49 |
Sharma M, Parton J. Height–diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. For Ecol Manag, 2007, 249(3): 187-198,
DOI
|
50 |
Sharma M, Zhang SY. Height-Diameter models using stand characteristics for Pinus banksiana and Picea mariana. Scand J for Res, 2004, 19(5): 442-451,
DOI
|
51 |
Temesgen H, von Gadow K. Generalized height–diameter models—an application for major tree species in complex stands of interior British Columbia. Eur J for Res, 2004, 123: 45-51
|
52 |
Timilsina N, Staudhammer CL. Individual tree-based diameter growth model of slash pine in Florida using nonlinear mixed modeling. For Sci, 2013, 59(1): 27-37,
DOI
|
53 |
Van Laar A, Akça A. Forest mensuration, 1997 Göttingen Cuvillier
|
54 |
VanderSchaaf CL. Mixed-effects height–diameter models for ten conifers in the inland Northwest, USA. South for J for Sci, 2014, 76(1): 1-9,
DOI
|
55 |
Von Gadow K, Hui G. Modelling forest development, 1999 Springer Netherlands
|
56 |
Wang ML, Borders BE, Zhao DH. An empirical comparison of two subject-specific approaches to dominant heights modeling: the dummy variable method and the mixed model method. For Ecol Manag, 2008, 255(7): 2659-2669,
DOI
|
57 |
Yang SI, Burkhart HE. Evaluation of total tree height subsampling strategies for estimating volume in loblolly pine plantations. For Ecol Manag, 2020, 461: 117878,
DOI
|
58 |
Zeide B, Vanderschaaf C (2002) The effect of density on the height-diameter relationship. In: Outcalt KW (eds) Proceedings of the 11th Biennial Southern Silvicultural Research Conference. 2001 March 20–22. USDA Forest Service, Gen. Tech. Rep. SRS–48, Asheville, NC, Knoxville, TN, pp 463–466
|
59 |
Zeng WS. Using nonlinear mixed model and dummy variable model approaches to develop origin-based individual tree biomass equations. Trees, 2015, 29(1): 275-283,
DOI
|
60 |
Zhang LJ, Peng CH, Huang SM, Zhou XL. Development and evaluation of ecoregion-based jack pine height-diameter models for Ontario. For Chron, 2002, 78(4): 530-538,
DOI
|