| 1 |
Awad A, Majcherczyk A, Schall P, Schröter K, Schöning I, Schrumpf M, Ehbrecht M, Boch S, Kahl T, Bauhus J, Seidel D, Ammer C, Fischer M, Kües U, Pena R. Ectomycorrhizal and saprotrophic soil fungal biomass are driven by different factors and vary among broadleaf and coniferous temperate forests. Soil Biol Biochem, 2019, 131: 9-18,
DOI
|
| 2 |
Bdeker I, Lindahl B, Olson K, Clemmensen K, Treseder K. Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently. Funct Ecol, 2016, 30(12): 1967-1978,
DOI
|
| 3 |
Bi B, Zhang H, Yuan Y, Wu Z, Wang Y, Han F. Dynamic changes of soil microbial community in Pinus sylvestris var. mongolica plantations in the Mu Us Sandy Land. J Environ Manag, 2021, 287: 112306,
DOI
|
| 4 |
Cao XW, Shi ZM, Chen J, Liu S, Zhang MM, Chen M, Xu GX, Wu JM, Xing HS, Li FF. Extracellular enzyme characteristics and microbial metabolic limitation in soil of subalpine forest ecosystems on the eastern Qinghai-Tibetan Plateau. Plant Soil, 2022, 479(1–2): 337-353,
DOI
|
| 5 |
Carrino-Kyker SR, Kluber LA, Petersen SM, Coyle KP, Hewins CR, DeForest JL, Smemo KA, Burke DJ. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests. FEMS Microbiol Ecol, 2016, 92(3): fiw024,
DOI
|
| 6 |
Carter TS, Clark CM, Fenn ME, Jovan S, Perakis SS, Riddell J, Schaberg PG, Greaver TL, Hastings MG. Mechanisms of nitrogen deposition effects on temperate forest lichens and trees. Ecosphere, 2017, 8(3): e01717,
DOI
|
| 7 |
Cui YX, Bing HJ, Fang LC, Wu YH, Yu JL, Shen GT, Jiang M, Wang X, Zhang XC. Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau. Geoderma, 2019, 338: 118-127,
DOI
|
| 8 |
Cullings K, Makhija S. Ectomycorrhizal fungal associates of Pinus contorta in soils associated with a hot spring in Norris geyser basin, Yellowstone national park. Wyoming Appl Environ Microbiol, 2001, 131(11–12): 5538-5568,
DOI
|
| 9 |
Curtin D, Peterson ME, Anderson CR. pH-dependence of organic matter solubility: Base type effects on dissolved organic C, N, P, and S in soils with contrasting mineralogy. Geoderma, 2016, 271: 161-172,
DOI
|
| 10 |
De Queiroz ME, Monteiro JS, Viana-Junior AB, Praxedes CD, Lavelle P, Vasconcelos SS. Litter thickness and soil pH influence the diversity of saprotrophic fungi in primary forest fragments in the Amazon. Pedobiologia, 2021, 89: 150771,
DOI
|
| 11 |
|
| 12 |
Duan CW, Li XL, Li CY, Yang PN, Chai Y, Xu WY. Positive effects of fungal β diversity on soil multifunctionality mediated by pH in the natural restoration succession stages of alpine meadow patches. Ecol Indic, 2023, 148(Suppl C): 110122,
DOI
|
| 13 |
Fan MC, Li JJ, Tang ZS, Shangguan ZP. Soil bacterial community succession during desertification in a desert steppe ecosystem. Land Degrad Dev, 2020, 31(13): 1662-1674,
DOI
|
| 14 |
Feng YX, Hu YY, Wu JS, Chen JH, Yrjala K, Yu WW. Change in microbial communities, soil enzyme and metabolic activity in a Torreya grandis plantation in response to root rot disease. Forest Ecol Manag, 2019, 432: 932-941,
DOI
|
| 15 |
Fujita S, Senda Y, Nakaguchi S, Hashimoto T. Multiplex PCR using internal transcribed spacer 1 and 2 regions for rapid detection and identification of yeast strains. J Clin Microbiol, 2001, 39(10): 3617-3622,
DOI
|
| 16 |
Gao C, Shi NN, Liu YX, Peay KG, Zheng Y, Ding Q, Mi XC, Ma KP, Wubet T, Buscot F, Guo LD. Host plant genus-level diversity is the best predictor of ectomycorrhizal fungal diversity in a Chinese subtropical forest. Mol Ecol, 2013, 22(12): 3403-3414,
DOI
|
| 17 |
Geml J, Pastor N, Fernandez L, Pacheco S, Semenova T, Becerra A, Wicaksono C, Nouhra E. Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol Ecol, 2014, 23(10): 2452-2472,
DOI
|
| 18 |
Goes K, Silva J, Lovato G, Iamanaka B, Massi F, Andrade D. Talaromyces sayulitensis, Acidiella bohemica and Penicillium citrinum in Brazilian oil shale by-products. Anton Leeuw Int J G, 2017, 110(12): 1637-1646,
DOI
|
| 19 |
Högberg MN, Bååth E, Nordgren A, Arnebrant K, Högberg P. Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs–a hypothesis based on field observations in boreal forest. New Phytol, 2003, 160(1): 225-238,
DOI
|
| 20 |
Högberg MN, Högberg P, Myrold DD. Is microbial community composition in boreal forest soils determined by pH, C–to–N ratio, the trees, or all three?. Oecologia, 2007, 150(4): 590-601,
DOI
|
| 21 |
Houles A, Vincent B, David M, Ducousso M, Galiana A, Juillot F, Hannibal L, Carriconde F, Fritsch E, Jourand P. Ectomycorrhizal communities associated with the legume Acacia spirorbis growing on contrasted edaphic constraints in New Caledonia. Microb Ecol, 2018, 76(4): 964-975,
DOI
|
| 22 |
Hu YF, Jiang SL, Yuan S, Deng LJ, Xiao HH, Shu XY, Chen GD, Xia JG. Changes in soil organic carbon and its active fractions in different desertification stages of alpine-cold grassland in the eastern Qinghai–Tibet Plateau. Environ Earth Sci, 2017, 76(9): 1-15,
DOI
|
| 23 |
Huang YT, Zhang X, Fu SL, Zhang WX. Environmental filtering drives local soil fungal beta diversity more than dispersal limitation in six forest types along a latitudinal gradient in Eastern China. Forests, 2019, 10(10): 863,
DOI
|
| 24 |
Issaly N, Chauveau H, Aglevor F, Fargues J, Durand A. Influence of nutrient, pH and dissolved oxygen on the production of Metarhizium flavoviride Mf189 blastospores in submerged batch culture. Process Biochem, 2005, 40(3–4): 1425-1431,
DOI
|
| 25 |
Johnson N, Graham J. The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil, 2013, 363(1–2): 411-419,
DOI
|
| 26 |
Kang HJ, Sigler L, Lee J, Gibas CF, Yun SH, Lee YW. Xylogone ganodermophthora sp. nov, an ascomycetous pathogen causing yellow rot on cultivated mushroom Ganoderma lucidum in Korea. Mycologia, 2010, 102(5): 1167-1184,
DOI
|
| 27 |
Katoh K, Standley DM. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics, 2016, 32(13): 1933-1942,
DOI
|
| 28 |
Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform, 2019, 20(4): 1160-1166,
DOI
|
| 29 |
Kivlin S, Hawkes C. Tree species, spatial heterogeneity, and seasonality drive soil fungal abundance, richness, and composition in Neotropical rainforests. Environ Microbiol, 2016, 18(12): 4662-4673,
DOI
|
| 30 |
Kutszegi G, Siller I, Dima B, Takacs K, Merenyi Z, Varga T, Turcsanyi G, Bidlo A, Odor P. Drivers of macrofungal species composition in temperate forests, West Hungary: functional groups compared. Fungal Ecol, 2015, 17: 69-83,
DOI
|
| 31 |
Li YM, Wang SP, Jiang LL, Zhang LR, Cui SJ, Meng FD, Wang Q, Li XN, Zhou Y. Changes of soil microbial community under different degraded gradients of alpine meadow. Agr Ecosyst Environ, 2016, 222: 213-222,
DOI
|
| 32 |
Li YM, Jiang LL, Lv WW, Cui SJ, Zhang LR, Wang Q, Meng FD, Li BW, Liu PP, Suonan J. Fungal pathogens pose a potential threat to animal and plant health in desertified and pika-burrowed alpine meadows on the Tibetan Plateau. Can J Microbiol, 2019, 65(5): 365-376,
DOI
|
| 33 |
Liang MX, Johnson D, Burslem DFRP, Yu SX, Fang M, Taylor JD, Taylor AFS, Helgason T, Liu XB. Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nat Commun, 2020, 11(1): 1-7,
DOI
|
| 34 |
Liu JY, Ding CJ, Zhang WX, Wei YW, Zhou YB, Zhu WX. Community characteristics of soil ectomycorrhizal fungi under different forests in the sandy areas of Northeastern China. J Soil Sci Plant Nut, 2023, 23(2): 2273-2286,
DOI
|
| 35 |
Looby CI, Treseder KK. Shifts in soil fungi and extracellular enzyme activity with simulated climate change in a tropical montane cloud forest. Soil Biol Biochem, 2018, 117(2): 87-96,
DOI
|
| 36 |
Lopes LD, Fontes Junior RC, Pacheco EP, Fernandes MF. Shifts in microbial and physicochemical parameters associated with increasing soil quality in a tropical Ultisol under high seasonal variation. Soil till Res, 2021, 206: 104819,
DOI
|
| 37 |
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J, 2011, 17(1): 10-12,
DOI
|
| 38 |
Martinováa V, van Geela M, Lievensb B, Honnaya O. Strong differences in Quercus robur-associated ectomycorrhizal fungal communities along a forest-city soil sealing gradient. Fungal Ecol, 2016, 20: 88-96,
DOI
|
| 39 |
Marx DH. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. V. Resistance of mycorrhizae to infection by vegetative mycelium of Phytophthora cinnamomi. Phytopathology, 1970, 60(10): 1472,
DOI
|
| 40 |
Nannipieri P, Trasar-Cepeda C, Dick RP. Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol Fert Soils, 2018, 54(1): 11-19,
DOI
|
| 41 |
Nguyena NH, Songb Z, Batesb ST, Brancoc S, Tedersood L, Menkea J, Schillinge JS, Kennedyaf PG. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol, 2016, 20: 241-248,
DOI
|
| 42 |
Noreika N, Pärtel M, Öpik M. Effects of mutualistic and pathogenic soil mycobiota on forest ecosystem functioning: herbaceous phytometer growth on natural and sterilised soils. Ecol Indic, 2021, 127: 107792,
DOI
|
| 43 |
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR . Community ecology package. R Package Vers, 2013, 2: 321-326
|
| 44 |
Osaki-Oka K, Suyama S, Sakuno E, Ushijima S, Nagasawa E, Maekawa N, Ishihara A. Antifungal activity of the volatile compound isovelleral produced by ectomycorrhizal Russula fungi against plant-pathogenic fungi. J Gen Plant Pathol, 2019, 85(6): 428-435,
DOI
|
| 45 |
Pereira E, Coelho V, Tavares RM, Lino-Neto T, Baptista P. Effect of competitive interactions between ectomycorrhizal and saprotrophic fungi on Castanea sativa performance. Mycorrhiza, 2012, 199(1): 41-49,
DOI
|
| 46 |
Phillips RP, Brzostek E, Midgley MG. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol, 2013, 199(1): 41-51,
DOI
|
| 47 |
Prenafeta-Boldú FX, Ballerstedt H, Gerritse J, Grotenhuis JT. Bioremediation of BTEX hydrocarbons: effect of soil inoculation with the toluene-growing fungus Cladophialophora sp. strain T1. Biodegradation, 2004, 15: 59-65,
DOI
|
| 48 |
Read DJ. Mycorrhizas in ecosystems. Cell Mol Life Sci, 1991, 47(4): 376-391,
DOI
|
| 49 |
Rousk J, Brookes PC, Bååth E. Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment. FEMS Microbiol Ecol, 2011, 76(1): 89-99,
DOI
|
| 50 |
Shiryaev AN. New and interesting clavarioid fungi from the hemiboreal zone of Finland. Karstenia, 2008, 48(2): 29-32,
DOI
|
| 51 |
Song X, Pan Y, Li L, Wu X, Wang Y. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch continuous cropping fields. PLoS ONE, 2018, 13(3): e0193811,
DOI
|
| 52 |
Sun L, Liu YF, Wang XT, Liu Y, Wu GL. Soil nutrient loss by gully erosion on sloping alpine steppe in the northern Qinghai–Tibetan Plateau. CATENA, 2022, 208: 105763,
DOI
|
| 53 |
Swett CL, Gordon TR. First report of grass species (Poaceae) as naturally occurring hosts of the pine pathogen Gibberella circinata. Plant Dis, 2012, 96(6): 908,
DOI
|
| 54 |
Tamerler C, Ullah M, Adlard MW, Keshavarz T. Effect of pH on physiology of Metarhizium anisopliae for production of swainsonine. Fems Microbiol Lett, 1998, 168(1): 17-23,
DOI
|
| 55 |
Tang ZS, Deng L, Shangguan ZP, Wang B, An H. Desertification and nitrogen addition cause species homogenization in a desert steppe ecosystem. Ecol Eng, 2019, 138: 54-60,
DOI
|
| 56 |
Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou N, Wijesundera R, Ruiz L, Vasco-Palacios A, Thu P, Suija A. Global diversity and geography of soil fungi. Science, 2014, 346(6213): 1078,
DOI
|
| 57 |
Tervonen K, Oldén A, Halme P. Ectomycorrhizal fungi in wood-pastures: Communities are determined by trees and soil properties, not by grazing. Agr Ecosyst Environ, 2019, 269: 13-21,
DOI
|
| 58 |
van der Heijde MGA, Bardgett RD, van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett, 2008, 11(3): 296-310,
DOI
|
| 59 |
Vern S, Blanco L, Texeira M, Irisarri JG, Paruelo J. Desertification and ecosystem services supply: the case of the arid Chaco of south America. J Arid Environ, 2018, 159: 66-74,
DOI
|
| 60 |
Wang PD, Chen YJ, Sun YT, Tan S, Zhang SY, Wang ZH, Zhou JZ, Zhang G, Shu WS, Luo CL. Distinct biogeography of different fungal guilds and their associations with plant species richness in forest ecosystems. Front Ecol Evol, 2019, 7: 216,
DOI
|
| 61 |
Wang W, Wang J, Wang Q, Bermudez RS, Yu S, Bu P, Wang Z, Chen D, Feng J. Effects of plantation type and soil depth on microbial community structure and nutrient cycling function. Front Microbiol, 2022, 13: 846468,
DOI
|
| 62 |
Waterman RJ, Klooster MR, Hentrich H, Bidartondo MI (2012) Species interactions of mycoheterotrophic plants: specialization and its potential consequences. Mycoheterotrophy: the biology of plants living on fungi. Springer, New York, NY. pp 267−296. https://doi.org/10.1007/978-1-4614-5209-6_7
|
| 63 |
|
| 64 |
Wyatt GAK, Kiers ET, Gardner A, West SA. A biological market analysis of the plant-mycorrhizal symbiosis: mycorrhizal: symbiosis as a biological market. Evolution, 2014, 68(9): 2603-2618,
DOI
|
| 65 |
Yamanaka T. The effect of pH on the growth of saprotrophic and ectomycorrhizal ammonia fungi in vitro. Mycologia, 2003, 95(4): 584-589,
DOI
|
| 66 |
Yang N, Wang B, Liu D, Wang X, Li XX, Zhang Y, Xu Y, Peng SL, Ge ZW, Mao LF, Ruan HH, Pena R. Long-term nitrogen deposition alters ectomycorrhizal community composition and function in a poplar plantation. J Fungi, 2021, 7(10): 791,
DOI
|
| 67 |
Yang N, Hua JN, Zhang JB, Liu D, Bhople P, Li XX, Zhang Y, Ruan HH, Xing W, Mao LF. Soil nutrients and plant diversity affect ectomycorrhizal fungal community structure and functional traits across three subalpine coniferous forests. Front Microbiol, 2022, 13: 1016610,
DOI
|
| 68 |
Yang N, Li XX, Liu D, Zhang Y, Chen Y, Wang B, Hua JN, Zhang JB, Peng SL, Ge ZW, Li JJ, Ruan HH, Mao LF. Diversity patterns and drivers of soil bacterial and fungal communities along elevational gradients in the southern Himalayas. China Appl Soil Ecol, 2022, 178: 104563,
DOI
|
| 69 |
Zak DR, Holmes WE, White DC, Peacock AD. Plant diversity, soil microbial communities, and ecosystem function: Are there any links?. Ecology, 2003, 84(8): 2042-2050,
DOI
|
| 70 |
Zeilinger S, Gupta VK, Dahms TES, Silva RN, Singh HB, Upadhyay RS, Gomes EV, Tsui CKM, Nayak C. Friends or foes? emerging insights from fungal interactions with plants. FEMS Microbiol Rev, 2016, 40(2): 182-207,
DOI
|
| 71 |
Zeng QC, Liu D, An SS. Decoupled diversity patterns in microbial geographic distributions on the arid area (the Loess Plateau). CATENA, 2021, 196: 104922,
DOI
|
| 72 |
Zhang H, Fu G. Responses of plant, soil bacterial and fungal communities to grazing vary with pasture seasons and grassland types, northern Tibet. Land Degrad Dev, 2020, 32(4): 1821-1832,
DOI
|
| 73 |
Zhang F, Zhu BZ, Zheng J, Xiong ZW, Jiang FQ, Han LW, Wang T, Wang M. Soil properties as indicators of desertification in an alpine meadow ecosystem of the Qinghai–Tibet Plateau. China Environ Earth Sci, 2013, 1: 249-258,
DOI
|
| 74 |
Zhang T, Wang NF, Liu HY, Zhang YQ, Yu LY. Soil pH is a key determinant of soil fungal community composition in the Ny-Alesund region. Svalbard Front Microbiol, 2016, 7: 227,
DOI
|
| 75 |
Zhang HC, Wang R, Chen S, Qi GF, He ZL, Zhao XY. Microbial taxa and functional genes shift in degraded soil with bacterial wilt. Sci Rep, 2017, 7(1): 39911,
DOI
|
| 76 |
Zhang CL, Li Q, Shen YP, Zhou N, Wang XS, Li J, Jia WR. Monitoring of aeolian desertification on the Qinghai–Tibet Plateau from the 1970s to 2015 using Landsat images. Sci Total Environ, 2018, 619–620(1): 1648-1659,
DOI
|
| 77 |
Zhang YJ, Ye C, Su YW, Peng WC, Lu R, Liu YX, Huang HC, He XH, Yang M, Zhu SS. Soil acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: evidence from literature review and field trials. Agr Ecosyst Environ, 2022, 340: 108176,
DOI
|
| 78 |
Zhang Y, Li XX, Zhang JB, Hua JN, Li JJ, Liu D, Bhople P, Ruan HH, Yang N. Desertification induced changes in soil bacterial and fungal diversity and community structure in a dry–hot valley forest. Appl Soil Ecol, 2023, 189(Suppl C): 104953,
DOI
|
| 79 |
Zhao AH, Liu L, Chen BD, Fu W, Xie W, Xu TL, Zhang W, Ye Q, Feng HY, Fu SL. Soil fungal community is more sensitive to nitrogen deposition than increased rainfall in a mixed deciduous forest of China. Soil Ecol Lett, 2020, 2(1): 20-32,
DOI
|
| 80 |
Zong N, Fu G. Variations in species and function diversity of soil fungal community along a desertification gradient in an alpine steppe. Ecol Indic, 2021, 131: 108197,
DOI
|