1 |
Anderson K, Fawcett D, Cugulliere A, Benford S, Jones D, Leng R. Vegetation expansion in the subnival Hindu Kush Himalaya. Global Change Biol, 2020, 26(3): 1608-1625,
DOI
|
2 |
Annighöfer P. Stress relief through gap creation? Growth response of a shade tolerant species (Fagus sylvatica L.) to a changed light environment. For Ecol Manage, 2018, 415: 139-147,
DOI
|
3 |
Barber VA, Juday GP, Finney BP. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature, 2000, 405(6787): 668-673,
DOI
|
4 |
Barbier S, Gosselin F, Balandier P. Influence of tree species on understory vegetation diversity and mechanisms involved—a critical review for temperate and boreal forests. For Ecol Manage, 2008, 254(1): 1-15,
DOI
|
5 |
Best DJ, Roberts DE. The upper tail probabilities of Spearman’s rho. J R Stat Soc Ser C Appl Stat, 1975, 24(3): 377-379,
DOI
|
6 |
Bird BW, Pratigya JP, Lei YB, Thompson LG, Yao TD, Finney BP, Bain DJ, Pompeani DP, Steinman BA. A Tibetan lake sediment record of Holocene Indian summer monsoon variability. Earth Planet Sci Lett, 2014, 399: 92-102,
DOI
|
7 |
Braswell BH, Schimel DS, Linder E, Moore lii B. The response of global terrestrial ecosystems to interannual temperature variability. Science, 1997, 278(5339): 870-873,
DOI
|
8 |
Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature, 1998, 391(6668): 678-682,
DOI
|
9 |
Brown AE, Zhang L, McMahon TA, Western AW, Vertessy RA. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J Hydrol, 2005, 310(1–4): 28-61,
DOI
|
10 |
Büntgen ULF, Frank D, Wilson ROB, Carrer M, Urbinati C, Esper JAN. Testing for tree-ring divergence in the European Alps. Global Change Biol, 2008, 14(10): 2443-2453,
DOI
|
11 |
Clark JS, Bell DM, Kwit M, Stine A, Vierra B, Zhu K. Individual-scale inference to anticipate climate-change vulnerability of biodiversity. Philos Trans R Soc Lond B Biol Sci, 2012, 367(1586): 236-246,
DOI
|
12 |
Clark JS, Iverson L, Woodall CW, Allen CD, Bell DM, Bragg DC, D'Amato AW, Davis FW, Hersh MH, Ibanez I, Jackson ST, Matthews S, Pederson N, Peters M, Schwartz MW, Waring KM, Zimmermann NE. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Global Change Biol, 2016, 22(7): 2329-2352,
DOI
|
13 |
Cook ER (1985) A time series analysis approach to tree ring standardization. Dissertation, University of Arizona, Tucson, AZ, USA. pp 60−80.
|
14 |
D'Arrigo R, Wilson R, Liepert B, Cherubini P. On the ‘Divergence Problem’ in northern forests: a review of the tree-ring evidence and possible causes. Glob Planet Change, 2008, 60(3–4): 289-305,
DOI
|
15 |
Di Filippo A, Biondi F, Čufar K, De Luis M, Grabner M, Maugeri M, Saba EP, Schirone B, Piovesan G. Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J Biogeogr, 2007, 34(11): 1873-1892,
DOI
|
16 |
Dong LB, Lin XY, Bettinger P, Liu ZG. The contributions of stand characteristics on carbon sequestration potential are triple that of climate variables for Larix spp. plantations in northeast China. Sci Total Environ, 2024, 911: 168726-168726,
DOI
|
17 |
Driscoll WW, Wiles GC, D'Arrigo RD, Wilmking M. Divergent tree growth response to recent climatic warming, Lake Clark National Park and Preserve, Alaska. Geophys Res Lett, 2005,
DOI
|
18 |
Esper J, Frank D. Divergence pitfalls in tree-ring research. Clim Change, 2009, 94(3–4): 261-266,
DOI
|
19 |
Esper J, Frank DC, Wilson RJS, Büntgen U, Treydte K. Uniform growth trends among central Asian low-and high-elevation juniper tree sites. Trees, 2007, 21: 141-150,
DOI
|
20 |
Fritts HC. Tree rings and climate, 1976 New York Academic Press
|
21 |
Gaire NP, Zaw ZZ, Bräuning A, Grießinger J, Sharma B, Rana P, Bhandari S, Basnet S, Fan ZX. The impact of warming climate on Himalayan silver fir growth along an elevation gradient in the Mt. Everest Region Agric for Meteorol, 2023, 339,
DOI
|
22 |
Gao SS, Wang YL, Yu S, Huang YQ, Liu HC, Chen W, He XY. Effects of drought stress on growth, physiology and secondary metabolites of Two Adonis species in Northeast China. Sci Hortic, 2020,
DOI
|
23 |
Gao S, Liang EY, Liu RS, Babst F, Camarero JJ, Fu YH, Piao SL, Rossi S, Shen MG, Wang T. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat Ecol Evol, 2022, 6: 397-404,
DOI
|
24 |
Grossiord C, Granier A, Ratcliffe S, Bouriaud O, Bruelheide H, Chećko E, Forrester DI, Dawud SM, Finér L, Pollastrini M, Scherer-Lorenzen M, Valladares F, Bonal D, Gessler A. Tree diversity does not always improve resistance of forest ecosystems to drought. Proc Natl Acad Sci USA, 2014, 111(41): 14812-14815,
DOI
|
25 |
Harris I, Osborn TJ, Jones P, Lister D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data, 2020, 7(1): 109,
DOI
|
26 |
Holmes RL. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull, 1983, 43: 69-78
|
27 |
Jacoby GC, D'Arrigo RD. Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochem Cycles, 1995, 9(2): 227-234,
DOI
|
28 |
Keeling HC, Phillips OL. The global relationship between forest productivity and biomass. Global Ecol Biogeogr, 2007, 16(5): 618-631,
DOI
|
29 |
Kharal DK, Thapa UK, George SS, Meilby H, Rayamajhi S, Bhuju DR. Tree-climate relations along an elevational transect in Manang Valley, central Nepal. Dendrochronologia, 2017, 41: 57-64,
DOI
|
30 |
Koerner C. Paradigm shift in plant growth control. Curr Opin Plant Biol, 2015, 25: 107-114,
DOI
|
31 |
Körner C. A re-assessment of high elevation treeline positions and their explanation. Oecologia, 1998, 115(4): 445-459,
DOI
|
32 |
Körner C, Paulsen J. A world-wide study of high altitude treeline temperatures. J Biogeogr, 2004, 31(5): 713-732,
DOI
|
33 |
Körner C, Basler D, Hoch G, Kollas C, Lenz A, Randin CF, Vitasse Y, Zimmermann NE. Where, why and how? Explaining the low-temperature range limits of temperate tree species. J Ecol, 2016, 104(4): 1076-1088,
DOI
|
34 |
Kraft NJ, Comita LS, Chase JM, Sanders NJ, Swenson NG, Crist TO, Stegen JC, Vellend M, Boyle B, Anderson MJ, Cornell HC, Davies KF, Freestone AL, Inouye BD, Harrison SP, Myers J. Disentangling the drivers of beta diversity along latitudinal and elevational gradients. Science, 2011, 333(6050): 1755-1758,
DOI
|
35 |
Kuang XX, Jiao JJ. Review on climate change on the Tibetan Plateau during the last half century. J Geophys Res Atmos, 2016, 121(8): 3979-4007,
DOI
|
36 |
Liang EY, Shao XM, Qin NS. Tree-ring based summer temperature reconstruction for the source region of the Yangtze River on the Tibetan Plateau. Global Planet Change, 2008, 61(3–4): 313-320,
DOI
|
37 |
Liang EY, Leuschner C, Dulamsuren C, Wagner B, Hauck M. Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau. Clim Change, 2016, 134(1): 163-176,
DOI
|
38 |
Liang EY, Wang YF, Piao SL, Lu XM, Camarero JJ, Zhu HF, Zhu LP, Ellison AM, Ciais P, Peñuelas J. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc Natl Acad Sci USA, 2016, 113(16): 4380-4385,
DOI
|
39 |
Littell JS, Peterson DL, Tjoelker M. Douglas-fir growth in mountain ecosystems: water limits tree growth from stand to region. Ecol Monogr, 2008, 78(3): 349-368,
DOI
|
40 |
Loehle C, Idso C, Wigley TB. Physiological and ecological factors influencing recent trends in United States forest health responses to climate change. For Ecol Manage, 2016, 363: 179-189,
DOI
|
41 |
Luo Y, Chen HYH. Climate change-associated tree mortality increases without decreasing water availability. Ecol Lett, 2015, 18(11): 1207-1215,
DOI
|
42 |
Lv LX, Zhang QB. Asynchronous recruitment history of Abies spectabilis along an altitudinal gradient in the Mt. Everest Region J Plant Ecol, 2012, 5(2): 147-156,
DOI
|
43 |
Lyu LX, Deng X, Zhang QB. Elevation pattern in growth coherency on the southeastern Tibetan Plateau. PLoS ONE, 2016, 11(9): ,
DOI
|
44 |
Lyu LX, Zhang QB, Deng X, Mäkinen H. Fine-scale distribution of treeline trees and the nurse plant facilitation on the eastern Tibetan Plateau. Ecol Indic, 2016, 66: 251-258,
DOI
|
45 |
Ma WL, Shi PL, Li WH, He YT, Zhang XZ, Shen ZX, Chai SY. Changes in individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau. Sci China Life Sci, 2010, 53(9): 1142-1151,
DOI
|
46 |
Montgomery DC, Peck EA, Vining GG. Introduction to linear regression analysis: John Wiley & Sons, 2021 New Jersey Wiley
|
47 |
Panthi S, Fan ZX, van der Sleen P, Zuidema PA. Long-term physiological and growth responses of Himalayan fir to environmental change are mediated by mean climate. Global Change Biol, 2020, 26(3): 1778-1794,
DOI
|
48 |
Peltier DMP, Ogle K. Tree growth sensitivity to climate is temporally variable. Ecol Lett, 2020, 23(11): 1561-1572,
DOI
|
49 |
Poorter L, van der Sande MT, Arets EJ, Ascarrunz N, Enquist BJ, Finegan B, Licona JC, Martínez-Ramos M, Mazzei L, Meave JA, Muñoz R, Nytch CJ, de Oliveira AA, Pérez-García EA, Prado-Junior J, Rodríguez-Velázques J, Ruschel AR, Salgado-Negret B, Schiavini I, Swenson NG, Tenorio EA, Thompson J, Toledo M, Uriarte M, van der Hout P, Zimmerman JK, Peña-Claros M. Biodiversity and climate determine the functioning of Neotropical forests. Global Ecol Biogeogr, 2017, 26(12): 1423-1434,
DOI
|
50 |
Pretzsch H, Dieler J. The dependency of the size-growth relationship of Norway spruce (Picea abies L. Karst.) and European beech (Fagus sylvatica L.) in forest stands on long-term site conditions drought events, and ozone stress. Trees, 2011, 25(3): 355-369,
DOI
|
51 |
Pretzsch H, Schütze G, Uhl E. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol, 2013, 15(3): 483-495,
DOI
|
52 |
Primicia I, Camarero JJ, Janda P, Čada V, Morrissey RC, Trotsiuk V, Bače R, Teodosiu M, Svoboda M. Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. For Ecol Manage, 2015, 354: 77-86,
DOI
|
53 |
R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
|
54 |
Rahbek C. The elevational gradient of species richness: a uniform pattern?. Ecography, 1995, 18(2): 200-205,
DOI
|
55 |
Rahman IU, Afzal A, Iqbal Z, Hart R, Abd Allah EF, Alqarawi AA, Alsubeie MS, Calixto ES, Ijaz F, Ali N. Response of plant physiological attributes to altitudinal gradient: plant adaptation to temperature variation in the Himalayan region. Sci Total Environ, 2020, 706,
DOI
|
56 |
Raz-Yaseef N, Rotenberg E, Yakir D. Effects of spatial variations in soil evaporation caused by tree shading on water flux partitioning in a semi-arid pine forest. Agric for Meteorol, 2010, 150(3): 454-462,
DOI
|
57 |
Ren P, Rossi S, Camarero JJ, Ellison AM, Liang EY, Penuelas J. Critical temperature and precipitation thresholds for the onset of xylogenesis of Juniperus przewalskii in a semi-arid area of the north-eastern Tibetan Plateau. Ann Bot, 2018, 121(4): 617-624,
DOI
|
58 |
Robson TM, Rodriguez-Calcerrada J, Sanchez-Gomez D, Aranda I. Summer drought impedes beech seedling performance more in a sub-Mediterranean forest understory than in small gaps. Tree Physiol, 2009, 29(2): 249-259,
DOI
|
59 |
Royo AA, Carson WP. Stasis in forest regeneration following deer exclusion and understory gap creation: a 10-year experiment. Ecol Appl, 2022,
DOI
|
60 |
Salerno F, Guyennon N, Thakuri S, Viviano G, Romano E, Vuillermoz E, Cristofanelli P, Stocchi P, Agrillo G, Ma Y, Tartari G. Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013). Cryosphere, 2015, 9(3): 1229-1247,
DOI
|
61 |
Schweingruber FH. Tree rings: basics and applications of dendrochronology, 1988 Kluwer Academic Publishers,
DOI
|
62 |
Sigdel SR, Wang YF, Camarero JJ, Zhu HF, Liang EY, Penuelas J. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Global Change Biol, 2018, 24(11): 5549-5559,
DOI
|
63 |
Szefer P, Molem K, Sau A, Novotny V. Impact of pathogenic fungi, herbivores and predators on secondary succession of tropical rainforest vegetation. J Ecol, 2020, 108(5): 1978-1988,
DOI
|
64 |
Thakuri S, Dahal S, Shrestha D, Guyennon N, Romano E, Colombo N, Salerno F. Elevation-dependent warming of maximum air temperature in Nepal during 1976–2015. Atmos Res, 2019, 228: 261-269,
DOI
|
65 |
Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature, 1999, 400(6740): 149-151,
DOI
|
66 |
Wang Y, Pederson N, Ellison AM, Buckley HL, Case BS, Liang EY, Camarero JJ. Increased stem density and competition may diminish the positive effects of warming at alpine treeline. Ecology, 2016, 97(7): 1668-1679,
DOI
|
67 |
Wang B, Chen T, Li CJ, Xu GB, Wu GJ, Liu GX. Radial growth of Qinghai spruce (Picea crassifolia Kom.) and its leading influencing climate factor varied along a moisture gradient. For Ecol Manage, 2020, 476: 118474,
DOI
|
68 |
Wilmking M, Juday GP. Longitudinal variation of radial growth at Alaska’s northern treeline—recent changes and possible scenarios for the 21st century. Global Planet Change, 2005, 47(2–4): 282-300,
DOI
|
69 |
Wilmking M, Myers-Smith I. Changing climate sensitivity of black spruce (Picea mariana Mill.) in a peatland–forest landscape in Interior Alaska. Dendrochronologia, 2008, 25(3): 167-175,
DOI
|
70 |
Wilmking M, Juday GP, Barber VA, Zald HS. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biol, 2004, 10(10): 1724-1736,
DOI
|
71 |
Yang RQ, Zhao F, Fan ZX, Panthi S, Fu PL, Braeuning A, Griessinger J, Li ZS. Long-term growth trends of Abies delavayi and its physiological responses to a warming climate in the Cangshan Mountains, southwestern China. For Ecol Manage, 2022, 505,
DOI
|
72 |
Yu WS, Wei FL, Ma YM, Liu WJ, Zhang YY, Luo L, Tian LD, Xu BQ, Qu D. Stable isotope variations in precipitation over Deqin on the southeastern margin of the Tibetan Plateau during different seasons related to various meteorological factors and moisture sources. Atmos Res, 2016, 170: 123-130,
DOI
|
73 |
Yu DS, Lu J, Zhang XS, Zhang M, Wang XL, Yang L, Tian Y. Exploring the differentiation effect between Larix Kongboensis and temperature and precipitation in the southeastern Tibetan Plateau of China. Appl Ecol Environ Res, 2023, 21(2): 1199-1217,
DOI
|
74 |
Yue S, Wang CY. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manage, 2004, 18(3): 201-218,
DOI
|
75 |
Zhang YX, Wilmking M. Divergent growth responses and increasing temperature limitation of Qinghai spruce growth along an elevation gradient at the northeast Tibet Plateau. For Ecol Manage, 2010, 260(6): 1076-1082,
DOI
|
76 |
Zhang YX, Guo MM, Wang XC, Gu FX, Liu SR. Divergent tree growth response to recent climate warming of Abies faxoniana at alpine treelines in east edge of Tibetan Plateau. Ecol Res, 2017, 33(2): 303-311,
DOI
|
77 |
Zhao YC, Wang MY, Hu SJ, Zhang XD, Ouyang Z, Zhang GL, Huang B, Zhao SW, Wu JS, Xie DT, Zhu B, Yu DS, Pan XZ, Xu SX, Shi XZ. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc Natl Acad Sci USA, 2018, 115(16): 4045-4050,
DOI
|
78 |
Zhu K, Woodall CW, Clark JS. Failure to migrate: lack of tree range expansion in response to climate change. Global Change Biol, 2012, 18(3): 1042-1052,
DOI
|