1 |
Bachofen C, D’Odorico P, Buchmann N. Light and VPD gradients drive foliar nitrogen partitioning and photosynthesis in the canopy of European beech and silver fir. Oecologia, 2020, 192(2): 323-339,
DOI
|
2 |
Chapin FS, Kedrowski RA. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology, 1983, 64(2): 376-391,
DOI
|
3 |
Chen JM, Wang R, Liu YH, He LM, Croft H, Luo XZ, Wang H, Smith NG, Keenan TF, Prentice IC, Zhang YG, Ju WM, Dong N. Global datasets of leaf photosynthetic capacity for ecological and earth system research. Earth Syst Sci Data, 2022, 14(9): 4077-4093,
DOI
|
4 |
Chen LT, Zhang Y, Nunes MH, Stoddart J, Khoury S, Chan AHY, Coomes DA. Predicting leaf traits of temperate broadleaf deciduous trees from hyperspectral reflectance: Can a general model be applied across a growing season?. Remote Sens Environ, 2022, 269: 112767,
DOI
|
5 |
Coble AP, Cavaleri MA. Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment. Oecologia, 2015, 177(4): 1131-1143,
DOI
|
6 |
Croft H, Chen JM, Froelich NJ, Chen B, Staebler RM. Seasonal controls of canopy chlorophyll content on forest carbon uptake: implications for GPP modeling. J Geophys Res: Biogeo, 2015, 120(8): 1576-1586,
DOI
|
7 |
Croft H, Chen JM, Luo X, Bartlett P, Chen B, Staebler RM. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Global Change Biol, 2017, 23(9): 3513-3524,
DOI
|
8 |
Croft H, Chen JM, Wang R, Mo G, Luo S, Luo X, He L, Gonsamo A, Arabian J, Zhang Y, Simic-Milas A, Noland T, He Y, Homolová L, Malenovský Z, Yi Q, Beringer J, Amiri R, Hutley L, Arellano P, Stahl C, Bonal D. The global distribution of leaf chlorophyll content. Remote Sens Environ, 2020, 236: 111479,
DOI
|
9 |
De Las Heras J, Hernández-Tecles EJ, Moya D. Seasonal nutrient retranslocation in reforested Pinus halepensis Mill. stands in Southeast Spain. New for, 2017, 48: 397-413,
DOI
|
10 |
Du E, Terrer C, Pellegrini AF, Ahlström A, van Lissa CJ, Zhao X, Xia N, Wu X, Jackson RB. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat Geosci, 2020, 13(3): 221-226,
DOI
|
11 |
Evans JR, Poorter H. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ, 2001, 24(8): 755-761,
DOI
|
12 |
Finer L. Variation in needle nutrient concentrations in the crown of Scots pine on peatland. Silva Fenn, 1994, 28(1): 41-51,
DOI
|
13 |
Granata MU, Bracco F, Nola P, Catoni R. Photosynthetic characteristic and leaf traits variations along a natural light gradient in Acer campestre and Crataegus monogyna. Flora, 2020, 268: 151626,
DOI
|
14 |
Hallik L, Kull O, Niinemets Ü, Aan A. Contrasting correlation networks between leaf structure, nitrogen and chlorophyll in herbaceous and woody canopies. Basic Appl Ecol, 2009, 10(4): 309-318,
DOI
|
15 |
Hallik L, Niinemets U, Wright IJ. Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora?. New Phytol, 2009, 184(1): 257-274,
DOI
|
16 |
He NP, Liu CC, Piao SL, Sack L, Xu L, Luo YQ, He JS, Han XG, Zhou GS, Zhou XH, Lin Y, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Zhang JH, Yu GR. Ecosystem traits linking functional traits to macroecology. Trends Ecol Evol, 2019, 34(3): 200-210,
DOI
|
17 |
Heaton EA, Dohleman FG, Long SP. Seasonal nitrogen dynamics of Miscanthus × giganteus and Panicum virgatum. GCB Bioenergy, 2009, 1(4): 297-307,
DOI
|
18 |
Hikosaka K. Optimality of nitrogen distribution among leaves in plant canopies. J Plant Res, 2016, 129(3): 299-311,
DOI
|
19 |
Hirose T. Development of the Monsi-Saeki theory on canopy structure and function. Ann Bot-London, 2005, 95(3): 483-494,
DOI
|
20 |
Hollinger DY. Optimality and nitrogen allocation in a tree canopy. Tree Physiol, 1996, 16(7): 627-634,
DOI
|
21 |
Katahata SI, Naramoto M, Kakubari Y, Mukai Y. Photosynthetic capacity and nitrogen partitioning in foliage of the evergreen shrub Daphniphyllum humile along a natural light gradient. Tree Physiol, 2007, 27(2): 199-208,
DOI
|
22 |
Keenan TF, Darby B, Felts E, Sonnentag O, Friedl MA, Hufkens K, O'Keefe J, Klosterman S, Munger JW, Toomey M, Richardson AD. Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment. Ecol Appl, 2014, 24(6): 1478-1489,
DOI
|
23 |
Kenzo T, Ichie T, Watanabe Y, Yoneda R, Ninomiya I, Koike T. Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest. Tree Physiol, 2006, 26(7): 865-873,
DOI
|
24 |
Kikuzawa K. Phenological and morphological adaptations to the light environment in two woody and two herbaceous plant species. Funct Ecol, 2003, 17(1): 29-38,
DOI
|
25 |
Kitajima K, Hogan KP. Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. Plant Cell Environ, 2003, 26(6): 857-865,
DOI
|
26 |
Kitaoka S, Koike T. Invasion of broad-leaf tree species into a larch plantation: seasonal light environment, photosynthesis and nitrogen allocation. Physiol Plantarum, 2004, 121(4): 604-611,
DOI
|
27 |
Kobayashi H, Inoue S, Gyokusen K. Spatial and temporal variations in the photosynthesis-nitrogen relationship in a Japanese cedar (Cryptomeria japonica D. Don) canopy. Photosynthetica, 2010, 48(2): 249-256,
DOI
|
28 |
Koerselman W, Meuleman AFM. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol, 1996, 33(6): 1441-1450,
DOI
|
29 |
Legner N, Fleck S, Leuschner C. Within-canopy variation in photosynthetic capacity, SLA and foliar N in temperate broad-leaved trees with contrasting shade tolerance. Trees, 2014, 28(1): 263-280,
DOI
|
30 |
Li Y, He NP, Hou JH, Xu L, Liu CC, Zhang JH, Wang QF, Zhang X, Wu XQ. Factors influencing leaf chlorophyll content in natural forests at the biome scale. Fron Ecol Evol, 2018, 6: 10,
DOI
|
31 |
Li YJ, Ma QM, Chen JM, Croft H, Luo XZ, Zheng T, Rogers C, Liu J. Fine-scale leaf chlorophyll distribution across a deciduous forest through two-step model inversion from sentinel-2 data. Remote Sens Environ, 2021, 264: 112618,
DOI
|
32 |
Lichtenthaler HK. Chlorophylls and carotenoids: pigments of photosynthetic biomenbranes. Method Enzymol, 1987, 148: 350-382,
DOI
|
33 |
Lichtenthaler HK, Babani F. Contents of photosynthetic pigments and ratios of chlorophyll a/b and chlorophylls to carotenoids (a+b)/(x+c) in C4 plants as compared to C3 plants. Photosynthetica, 2022, 60: 3-9,
DOI
|
34 |
Liu JX, Zhang DQ, Zhou GY, Duan HL. Changes in leaf nutrient traits and photosynthesis of four tree species: effects of elevated [CO2], N fertilization and canopy positions. J Plant Ecol, 2012, 5(4): 376-390,
DOI
|
35 |
Liu ZL, Wang CK, Chen JM, Wang XC, Jin GZ. Empirical models for tracing seasonal changes in leaf area index in deciduous broadleaf forests by digital hemispherical photography. Forest Ecol Manag, 2015, 351: 67-77,
DOI
|
36 |
Liu F, Wang XC, Wang CK. Measuring vegetation phenology with near-surface remote sensing in a temperate deciduous forest: effects of sensor type and deployment. Remote Sensing, 2019, 11(9): 1063,
DOI
|
37 |
Liu F, Wang XC, Wang CK, Zhang QZ. Environmental and biotic controls on the interannual variations in CO2 fluxes of a continental monsoon temperate forest. Agric for Meteorol, 2021, 296: 108232,
DOI
|
38 |
Mandre M. Vertical gradients of mineral elements in Pinus sylvestris crown in alkalised soil. Environ Monit Assess, 2009, 159(1–4): 111-124,
DOI
|
39 |
Muller O, Hikosaka K, Hirose T. Seasonal changes in light and temperature affect the balance between light harvesting and light utilisation components of photosynthesis in an evergreen understory shrub. Oecologia, 2005, 143(4): 501-508,
DOI
|
40 |
Muller O, Hirose T, Werger MJ, Hikosaka K. Optimal use of leaf nitrogen explains seasonal changes in leaf nitrogen content of an understorey evergreen shrub. Ann Bot-London, 2011, 108(3): 529-536,
DOI
|
41 |
Niinemets Ü. Photosynthesis and resource distribution through plant canopies. Plant Cell Environ, 2007, 30(9): 1052-1071,
DOI
|
42 |
Niinemets Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol Res, 2010, 25(4): 693-714,
DOI
|
43 |
Niinemets Ü. Variation in leaf photosynthetic capacity within plant canopies: optimization, structural, and physiological constraints and inefficiencies. Photosynth Res, 2023, 158: 131-149,
DOI
|
44 |
Niinemets Ü, Tenhunen JD. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ, 1997, 20(7): 845-866,
DOI
|
45 |
Niinemets Ü, Keenan TF, Hallik L. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol, 2015, 205(3): 973-993,
DOI
|
46 |
Nilsen P, Abrahamsen G. Scots pine and Norway spruce stands responses to annual N, P and Mg fertilization. Forest Ecol Manag, 2003, 174(1): 221-232,
DOI
|
47 |
Noda HM, Muraoka H, Nasahara KN, Saigusa N, Murayama S, Koizumi H. Phenology of leaf morphological, photosynthetic, and nitrogen use characteristics of canopy trees in a cool-temperate deciduous broadleaf forest at Takayama, central Japan. Ecol Res, 2015, 30(2): 247-266,
DOI
|
48 |
Ollinger SV, Richardson AD, Martin ME, Hollinger DY, Frolking SE, Reich PB, Plourde LC, Katul GG, Munger JW, Oren R, Smith ML, Paw UKT, Bolstad PV, Cook BD, Day MC, Martin TA, Monson RK, Schmid HP. Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks. P Natl Acad Sci USA, 2008, 105(49): 19336-19341,
DOI
|
49 |
Osnas JLD, Lichstein JW, Reich PB, Pacala SW. Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science, 2013, 340(6133): 741-744,
DOI
|
50 |
Ots K, Mandre M, Pärn H, Kask R, Pikk J. Changes in the allocation of nutrients and biomass in scots pine (Pinus sylvestris L.) canopy in an area of cement industry in Northeast Estonia. Balt for, 2009, 15(2): 237-247
|
51 |
Palma RM, Defrieri RL, Tortarolo MF, Prause J, Gallardo JF. Seasonal changes of bioelements in the litter and their potential return to green leaves in four species of the argentine subtropical forest. Ann Bot-London, 2000, 85(2): 181-186,
DOI
|
52 |
Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quetier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot, 2013, 61(3): 167-234,
DOI
|
53 |
Sabate S, Sala A, Gracia CA. Nutrient content in Quercus ilex canopies: seasonal and spatial variation within a catchment. Plant Soil, 1995, 169(1): 297-304,
DOI
|
54 |
Seidel F, Lopez CML, Bonifacio E, Kurokawa H, Yamanaka T, Celi L. Seasonal phosphorus and nitrogen cycling in four Japanese cool-temperate forest species. Plant Soil, 2022, 472(1–2): 391-406,
DOI
|
55 |
Simic A, Chen JM, Noland TL. Retrieval of forest chlorophyll content using canopy structure parameters derived from multi-angle data: the measurement concept of combining nadir hyperspectral and off-nadir multispectral data. Int J Remote Sens, 2011, 32(20): 5621-5644,
DOI
|
56 |
Sun XF, Liu F, Zhang QZ, Li YC, Zhang LF, Wang J, Zhang HY, Wang CK, Wang XC. Biotic and climatic controls on the interannual variation in canopy litterfall of a deciduous broad-leaved forest. Agric for Meteorol, 2021, 307: 108483,
DOI
|
57 |
Sun X, Wang XC, Wang CK, Zhang QZ, Guo QX. Filling the “vertical gap” between canopy tree species and understory shrub species: biomass allometric equations for subcanopy tree species. J Forestry Res, 2023, 34(4): 903-913,
DOI
|
58 |
Valladares F, Niinemets Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol S, 2008, 39(1): 237-257,
DOI
|
59 |
Wang L, Ibrom A, Korhonen JFJ, Arnoud Frumau KF, Wu J, Pihlatie M, Schjoerring JK. Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies. Biogeosciences, 2013, 10(2): 999-1011,
DOI
|
60 |
Wang SQ, Li Y, Ju WM, Chen B, Chen JH, Croft H, Mickler RA, Yang FT. Estimation of leaf photosynthetic capacity from leaf chlorophyll content and leaf age in a subtropical evergreen coniferous plantation. J Geophys Res Biogeo, 2020, 125(2): 14,
DOI
|
61 |
Wang CS, Guo JJ, Zhao ZG, Wang H, Zeng J. Spatial patterns and seasonal dynamics of foliar nutrients in 5-year-old Betula alnoides plantations. Forest Ecol Manag, 2021, 480: 118683,
DOI
|
62 |
Wang XC, Song HM, Liu F, Quan XK, Wang CK. Timing of leaf fall and changes in litter nutrient concentration compromise estimates of nutrient fluxes and nutrient resorption efficiency. Forest Ecol Manag, 2022, 513: 120188,
DOI
|
63 |
Yang X, Tang JW, Mustard JF, Wu J, Zhao KG, Serbin S, Lee JE. Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests. Remote Sens Environ, 2016, 179: 1-12,
DOI
|
64 |
Yang HL, Yang X, Heskel M, Sun SC, Tang JW. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest. Sci Rep, 2017, 7(1): 1267,
DOI
|
65 |
Yoshimura K. Irradiance heterogeneity within crown affects photosynthetic capacity and nitrogen distribution of leaves in Cedrela sinensis. Plant Cell Environ, 2010, 33(5): 750-758,
DOI
|
66 |
Zhang YQ, Chen JM, Thomas SC. Retrieving seasonal variation in chlorophyll content of overstory and understory sugar maple leaves from leaf-level hyperspectral data. Can J Remote Sens, 2007, 33(5): 406-415,
DOI
|
67 |
Zhuang J, Zhou L, Wang YL, Chi YG. Nitrogen allocation regulates the relationship between maximum carboxylation rate and chlorophyll content along the vertical gradient of subtropical forest canopy. Agric for Meteorol, 2021, 307: 108512,
DOI
|