| 1 |
Äijälä O, Koistinen A, Sved J, Vanhatalo K, Väsäinen P (2014) Hyvän metsänhoidon suositukset [Good forest management recommendations]. Forestry Development Center Tapio (In Finnish)
|
| 2 |
Blattert C, Eyvindson K, Hartikainen M, Burgas D, Potterf M, Lukkarinen J, Snäll T, Toraño-Caicoya A, Mönkkönen M. Sectoral policies cause incoherence in forest management and ecosystem service provisioning. For Policy Econ, 2022, 136,
DOI
|
| 3 |
Burton PJ, Messier C, Smith DW, Adamowiz WL. Towards sustainable management of the boreal forest, 2003 Ottawa NRC Research Press
|
| 4 |
Cajander AK. Forest types and their significance. Silva Fenn, 1949, 56: 7396
|
| 5 |
Della Rocca F, Milanesi P. Combining climate, land use change and dispersal to predict the distribution of endangered species with limited vagility. J Biogeogr, 2020, 47: 1427-1438,
DOI
|
| 6 |
Dyola N, Sigdel SR, Liang E, Babst F, Camarero JJ, Aryal S, Chettri N, Gao S, Lu X, Sun J, Wang T, Zhang G, Zhu H, Piao S, Peñuelas J. Species richness is a strong driver of forest biomass along broad bioclimatic gradients in the Himalayas. Ecosphere, 2022, 13,
DOI
|
| 7 |
Edenius L, Mikusiński G. Utility of habitat suitability models as biodiversity assessment tools in forest management. Scand J For Res, 2006, 21: 62-72,
DOI
|
| 8 |
Eyvindson K, Duflot R, Triviño M, Blattert C, Potterf M, Mönkkönen M. High boreal forest multifunctionality requires continuous cover forestry as a dominant management. Land Use Policy, 2021, 100,
DOI
|
| 9 |
|
| 10 |
Felton A, Sonesson J, Nilsson U, Lämås T, Lundmark T, Nordin A, Ranius T, Roberge JM. Varying rotation lengths in northern production forests: Implications for habitats provided by retention and production trees. Ambio, 2017, 46: 324-334,
DOI
|
| 11 |
|
| 12 |
Foden WB, Butchart SHM, Stuart SN, Vié JC, Akçakaya HR, Angulo A, DeVantier LM, Gutsche A, Turak E, Cao L, Donner SD, Katariya V, Bernard R, Holland RA, Hughes AF, O’Hanlon SE, Garnett ST, Şekercioğlu ÇH, Mace GM. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE, 2013, 8,
DOI
|
| 13 |
Gossner MM, Lachat T, Brunet J, Isacsson G, Bouget C, Brustel H, Brandl R, Weisser WW, Müller J. Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv Biol, 2013, 27: 605-614,
DOI
|
| 14 |
Hämäläinen A, Kouki J, Lohmus P. The value of retained Scots pines and their dead wood legacies for lichen diversity in clear-cut forests: The effects of retention level and prescribed burning. For Ecol Manag, 2014, 324: 89-100,
DOI
|
| 15 |
Harmon ME, Fasth BG, Yatskov M, Kastendick D, Rock J, Woodall CW. Release of coarse woody detritus-related carbon: A synthesis across forest biomes. Carbon Balance Manag, 2020, 15: 1-21,
DOI
|
| 16 |
Harmon ME, Sexton J. Guidelines for measurements for of woody detritus in forest ecosystems, 1996 Washington Seattle
|
| 17 |
Hautala H, Jalonen J, Laaka-Lindberg S, Vanha-Majamaa I. Impacts of retention felling on coarse woody debris (CWD) in mature boreal spruce forests in Finland. Biodivers Conserv, 2004, 13: 1541-1554,
DOI
|
| 18 |
Heinonen T, Pukkala T, Kellomäki S, Strandman H, Asikainen A, Venäläinen A, Peltola H. Effects of forest management and harvesting intensity on the timber supply from Finnish forests in a changing climate. Can J For Res, 2018, 48: 1124-1134,
DOI
|
| 19 |
Heinonen T, Pukkala T, Mehtätalo L, Asikainen A, Kangas J, Peltola H. Scenario analyses for the effects of harvesting intensity on development of forest resources, timber supply, carbon balance and biodiversity of Finnish forestry. For Policy Econ, 2017, 80: 80-98,
DOI
|
| 20 |
Henttonen HM, Nöjd P, Suvanto S, Heikkinen J, Mäkinen H. Large trees have increased greatly in Finland during 1921–2013, but recent observations on old trees tell a different story. Ecol Indic, 2019, 99: 118-129,
DOI
|
| 21 |
IPCC (2021) Climate Change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change
|
| 22 |
Jaeschke A, Bittner T, Reineking B, Beierkuhnlein C. Can they keep up with climate change? Integrating specific dispersal abilities of protected Odonata in species distribution modelling. Insect Conserv Divers, 2013, 6: 93-103,
DOI
|
| 23 |
Jönsson AM, Lagergren F, Smith B. Forest management facing climate change − an ecosystem model analysis of adaptation strategies. Mitig Adapt Strateg Glob Chang, 2015, 20: 201-220,
DOI
|
| 24 |
Jonsson M, Bengtsson J, Moen J, Gamfeldt L, Snäll T (2020) Stand age and climate influence forest ecosystem service delivery and multifunctionality. Environ Res Lett 15:0940a8. https://doi.org/10.1088/1748-9326/abaf1c
|
| 25 |
Jonsson R. How to cope with changing demand conditions − the Swedish forest sector as a case study: An analysis of major drivers of change in the use of wood resources. Can J For Res, 2013, 43: 405-418,
DOI
|
| 26 |
Juutinen A, Mönkkönen M, Sippola AL. Cost-Efficiency of decaying wood as a surrogate for overall species richness in boreal forests. Conserv Biol, 2006, 20: 74-84,
DOI
|
| 27 |
Kellomäki S. Managing boreal forests in the context of climate change: impacts, 2017 Adaptation and Climate Change Mitigation CRC Press, Taylor & Francis Group, Boca Raton, FL,
DOI
|
| 28 |
Kellomäki S. Kellomäki S. Successional dynamics of boreal forest ecosystem. Management of Boreal Forests: Theories and Applications for Ecosystem Services, 2022 Springer 219-278,
DOI
|
| 29 |
Kellomäki S, Peltola H, Nuutinen T, Korhonen KT, Strandman H. Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philos Trans R Soc Lond b, Biol Sci, 2008, 363: 2339-2349,
DOI
|
| 30 |
Kouki J, Tikkanen OP (eds) (2007) Uhanalaisten lahopuulajien elinympäristöjen turvaaminen suojelualueilla ja talousmetsissä: Kustannustehokkuus ja ekologiset, ekonomiset sekä sosiaaliset vaikutukset Kitsin seudulla Lieksassa (Conservation of threatened saproxylic species assemblages in eastern Finland: long-term cost-efficient solutions and their ecological, economic and social implications). Suomen Ympäristö-Finnish Environment 24:1–104
|
| 31 |
Kuuluvainen T, Lindberg H, Vanha-Majamaa I, Keto-Tokoi P, Punttila P. Low-level retention forestry, certification, and biodiversity: case Finland. Ecol Process, 2019, 8: 47,
DOI
|
| 32 |
Kuuluvainen T, Tahvonen O, Aakala T. Even-aged and uneven-aged forest management in boreal Fennoscandia: a review. Ambio, 2012, 41: 720-737,
DOI
|
| 33 |
Lassauce A, Paillet Y, Jactel H, Bouget C (2011) Deadwood as a surrogate for forest biodiversity: Meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecol Indic 11:1027–1039. https://doi.org/10.1016/j.ecolind.2011.02.004
|
| 34 |
Lehtonen A, Venäläinen A, Kämäräinen M, Peltola H, Gregow H. Risk of large-scale fires in boreal forests of Finland under changing climate. Nat Hazards Earth Syst Sci, 2016, 16: 239-253,
DOI
|
| 35 |
Lindenmayer DB. Forest wildlife management and conservation. Ann N Y Acad Sci, 2009, 1162: 284-310,
DOI
|
| 36 |
Mair L, Jönsson M, Räty M, Bärring L, Strandberg G, Lämås T, Snäll T. Land use changes could modify future negative effects of climate change on old-growth forest indicator species. Divers Distrib, 2018, 24: 1416-1425,
DOI
|
| 37 |
Mäkinen H, Hynynen J, Siitonen J, Sievänen R. Predicting the decomposition of Scots pine, Norway spruce, and birch stems in Finland. Ecol Appl, 2006, 16: 1865-1879,
DOI
|
| 38 |
Matala J, Ojansuu R, Peltola H, Raitio H, Kellomäki S. Modelling the response of tree growth to temperature and CO2 elevation as related to the fertility and current temperature sum of a site. Ecol Modell, 2006, 199: 39-52,
DOI
|
| 39 |
Matala J, Ojansuu R, Peltola H, Sievänen R, Kellomäki S. Introducing effects of temperature and CO2 elevation on tree growth into a statistical growth and yield model. Ecol Modell, 2005, 181: 173-190,
DOI
|
| 40 |
Mazziotta A, Lundström J, Forsell N, Moor H, Eggers J, Subramanian N, Aquilué N, Morán-Ordóñez A, Brotons L, Snäll T. More future synergies and less trade-offs between forest ecosystem services with natural climate solutions instead of bioeconomy solutions. Glob Chang Biol, 2022, 28(21): 6333-6348,
DOI
|
| 41 |
Mazziotta A, Mönkkönen M, Strandman H, Routa J, Tikkanen OP, Kellomäki S. Modeling the effects of climate change and management on the dead wood dynamics in boreal forest plantations. Eur J For Res, 2014, 133: 405-421,
DOI
|
| 42 |
Mazziotta A, Triviño M, Tikkanen OP, Kouki J, Strandman H, Mönkkönen M. Habitat associations drive species vulnerability to climate change in boreal forests. Clim Change, 2016, 135: 585-595,
DOI
|
| 43 |
Mikkonen S, Laine M, Mäkelä HM, Gregow H, Tuomenvirta H, Lahtinen M, Laaksonen A. Trends in the average temperature in Finland, 1847–2013. Stoch Environ Res Risk Assess, 2015, 29: 1521-1529,
DOI
|
| 44 |
Mönkkönen M, Aakala T, Blattert C, Burgas D, Duflot R, Eyvindson K, Kouki J, Laaksonen T, Punttila P. More wood but less biodiversity in forests in Finland: a historical evaluation. Memo Soc Fauna Flora Fenn, 2022, 98: 1-11
|
| 45 |
Mönkkönen M, Juutinen A, Mazziotta A, Miettinen K, Podkopaev D, Reunanen P, Salminen H, Tikkanen OP (2014) Spatially dynamic forest management to sustain biodiversity and economic returns. J Environ Manag 134:80–89. https://doi.org/10.1016/j.jenvman.2013.12.021
|
| 46 |
Peltola A, Räty M, Sauvula-Seppälä T, Torvelainen J, Uotila E, Vaahtera E, Ylitalo E (2020) Metsätilastot – Finnish Forest Statistics (In Finnish and English). Luonnonvarakeskus (Luke). Helsinki.
|
| 47 |
Penttilä R, Siitonen J, Kuusinen M. Polypore diversity in managed and old-growth boreal Picea abies forests in southern Finland. Biol Conserv, 2004, 117: 271-283,
DOI
|
| 48 |
Peura M, Burgas D, Eyvindson K, Repo A, Mönkkönen M. Continuous cover forestry is a cost-efficient tool to increase multifunctionality of boreal production forests in Fennoscandia. Biol Conserv, 2018, 217: 104-112,
DOI
|
| 49 |
Pukkala T, Lähde E, Laiho O. Species interactions in the dynamics of even- and uneven-aged boreal forests. J Sustain For, 2013, 32: 371-403,
DOI
|
| 50 |
Rasinmäki J, Mäkinen A, Kalliovirta J. SIMO: An adaptable simulation framework for multiscale forest resource data. Comput Electron Agric, 2009, 66: 76-84,
DOI
|
| 51 |
Rassi P, Hyvärinen E, Juslén A, Mannerkoski I (2010) The 2010 Red List of Finnish Species. Ympäristöministeriö and Suomen ympäristökeskus, Helsinki, p 182
|
| 52 |
Ruosteenoja K, Jylhä K, Kämäräinen M. Climate projections for Finland under the RCP forcing scenarios. Geophysica, 2016, 51: 17-50
|
| 53 |
Russell MB, Woodall CW, D’Amato AW, Fraver S, Bradford JB. Linking climate change and downed woody debris decomposition across forests of the eastern United States. Biogeosciences, 2014, 1: 6417-6425,
DOI
|
| 54 |
Siira-Pietikäinen A, Haimi J. Changes in soil fauna 10 years after forest harvestings: comparison between clear felling and green-tree retention methods. For Ecol Manag, 2009, 258: 332-338,
DOI
|
| 55 |
Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 11–41. https://doi.org/10.2307/20113262
|
| 56 |
Siitonen J, Saaristo L. Habitat requirements and conservation of Pytho kolwensis, a beetle species of old-growth boreal forest. Biol Conserv, 2000, 94: 211-220,
DOI
|
| 57 |
Stokland JN, Siitonen J, Jonsson BG. biodiversity in dead wood, 2012 Cambridge, UK Cambridge University Press 510,
DOI
|
| 58 |
Subramanian N, Nilsson U, Mossberg M, Bergh J. Impacts of climate change, weather extremes and alternative strategies in managed forests. Ecoscience, 2019, 26: 53-70,
DOI
|
| 59 |
Svensson J, Andersson J, Sandström P, Mikusiński G, Jonsson BG. Landscape trajectory of natural boreal forest loss as an impediment to green infrastructure. Conserv Biol, 2019, 33: 152-163,
DOI
|
| 60 |
Tikkanen OP, Heinonen T, Kouki J, Matero J. Habitat suitability models of saproxylic red-listed boreal forest species in long-term matrix management: Cost-effective measures for multi-species conservation. Biol Conserv, 2007, 140: 359-372,
DOI
|
| 61 |
Tikkanen OP, Martikainen P, Hyvarinen E, Junninen K, Kouki J. Red-listed boreal forest species of Finland: associations with forest structure, tree species, and decaying wood. Ann Zool Fennici, 2006, 43: 373-383
|
| 62 |
Triviño M, Pohjanmies T, Mazziotta A, Juutinen A, Podkopaev D, Le Tortorec E, Mönkkönen M. Optimizing management to enhance multifunctionality in a boreal forest landscape. J Appl Ecol, 2017, 54: 61-70,
DOI
|
| 63 |
Tuomi M, Laiho R, Repo A, Liski J. Wood decomposition model for boreal forests. Ecol Modell, 2011, 222: 709-718,
DOI
|
| 64 |
van Lierop P, Lindquist E, Sathyapala S, Franceschini G. Global forest area disturbance from fire, insect pests, diseases and severe weather events. For Ecol Manag, 2015, 352: 78-88,
DOI
|
| 65 |
van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK. The representative concentration pathways: an overview. Clim Change, 2011, 109: 5-31,
DOI
|
| 66 |
Venäläinen A, Lehtonen I, Laapas M, Ruosteenoja K, Tikkanen OP, Viiri H, Ikonen VP, Peltola H. Climate change induces multiple risks to boreal forests and forestry in Finland: a literature review. Glob Chang Biol, 2020, 26: 4178-4196,
DOI
|
| 67 |
Von Salzen K, Scinocca JF, McFarlane NA, Li J, Cole JNS, Plummer D, Verseghy D, Reader MC, Ma X, Lazare M, Solheim L (2013) The Canadian fourth generation atmospheric global climate model (CanAM4). Part I: Representation of physical processes. Atmos Ocean 51:104–125. https://doi.org/10.1080/07055900.2012.755610
|
| 68 |
Work TT, Jacobs JM, Spence JR, Volney WJ. High levels of green-tree retention are required to preserve ground beetle biodiversity in boreal mixedwood forests. Ecol Appl, 2010, 20: 741-751,
DOI
|
| 69 |
Yang S, Limpens J, Sterck FJ, Sass-Klaassen U, Cornelissen JHC, Hefting M, van Logtestijn RSP, Goudzwaard L, Dam N, Dam M, Veerkamp MT, van den Berg B, Brouwer E, Chang C, Poorter L. Dead wood diversity promotes fungal diversity. Oikos, 2021, 130: 2202-2216,
DOI
|
| 70 |
Zubizarreta-Gerendiain A, Pukkala T, Peltola H. Effect of wind damage on the habitat suitability of saproxylic species in a boreal forest landscape. J Forestry Res, 2019, 30: 879-889,
DOI
|