1 |
Alvares CA, Stape JL, Sentelhas PC, de Moraes Gonçalves JL, Sparovek G. Köppen’s climate classification map for Brazil. Meteorol Zeitschrift, 2013, 22: 711-728,
DOI
|
2 |
Antala M, Juszczak R, van der Tol C, Rastogi A. Impact of climate change-induced alterations in peatland vegetation phenology and composition on carbon balance. Sci Total Environ, 2022, 827,
DOI
|
3 |
Barros TC, Elias F, Romano LL, Ferreira J. Natural recovery of plant species diversity in secondary forests in Eastern Amazonia: contributions to passive forest restoration. Rev Bras Bot, 2020, 43: 165-175,
DOI
|
4 |
Blow FE. Quantity and hydrologic characteristics of litter upland oak forest in Eastern Tennessee. J For, 1955, 53: 190-195
|
5 |
Brando P, Macedo M, Silvério D, Rattis L, Paolucci L, Alencar A, Coe M, Amorim C. Amazon wildfires: scenes from a foreseeable disaster. Flora Morphol Distrib Funct Ecol Plants, 2020, 268,
DOI
|
6 |
Bufacchi P, Bizzo WA, Buckeridge MS, Franco-Jacome DL, Grandis A, Cambler AB, Filho GCK. Thermal degradation of leaves from the Amazon rainforest litter considering non-structural, structural carbohydrates and lignin composition. Bioresour Technol Rep, 2020, 11,
DOI
|
7 |
Caldeira MVW, de GodinhoMoreira TOFL, Campanharo LF, Castro KC, Mendonça A, Trazzi PA. Litter as an ecological indicator of forest restoration processes in a dense Ombrophylous lowland forest. Floresta e Ambient, 2019, 26: 1-11,
DOI
|
8 |
Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD. Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor Appl Climatol, 2004,
DOI
|
9 |
Cuevas E, Medina E. Nutrient dynamics within amazonian forest ecosystems—I. Nutrient flux in fine litter fall and efficiency of nutrient utilization. Oecologia, 1986, 68: 466-472,
DOI
|
10 |
de Moura YM, Galvão LS, Hilker T, Wu J, Saleska S, do Amaral CH, Nelson BW, Lopes AP, Wiedeman KK, Prohaska N, de Oliveira RC, Machado CB, Aragão LEOC. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations. ISPRS J Photogramm Remote Sens, 2017, 131: 52-64,
DOI
|
11 |
de Tenório ARM, da Graça JJC, Góes JEM, Mendez JR, Gama JRNF, da Silva PRO, das Chagas PSM, da Silva RNP, Americo RR, Pereira WLM. Mapeamento dos solos da estação de piscicultura de Castanhal, 1999 Belém FCAP
|
12 |
Dong X, Li F, Lin Z, Harrison SP, Chen Y, Kug JS. Climate influence on the 2019 fires in Amazonia. Sci Total Environ, 2021,
DOI
|
13 |
dos Santos Jr HB, Araújo EAA, de Rodrigues JIM, Martins WBR, Rangel-Vasconcelos LGT, de Oliveira FA. Fitossociologia e propriedades físicas da liteira em um ecossistema sucessional alterado pela agricultura itinerante na Amazônia oriental. Sci Plena, 2021, 17: 1-16,
DOI
|
14 |
Espinoza JC, Marengo JA, Schongart J, Jimenez JC. The new historical flood of 2021 in the Amazon river compared to major floods of the 21st century: atmospheric features in the context of the intensification of floods. Weather Clim Extrem, 2022, 35(11): ,
DOI
|
15 |
Garcia MN, Ferreira MJ, Ivanov V, dos Santos VAHF, Ceron JV, Guedes AV, Saleska SR, Oliveira RS. Importance of hydraulic strategy trade-offs in structuring response of canopy trees to extreme drought in central Amazon. Oecologia, 2021, 197: 13-24,
DOI
|
16 |
Heinimann A, Mertz O, Frolking S, Christensen AE, Hurni K, Sedano F, Chini LP, Sahajpal R, Hansen M, Hurtt G. A global view of shifting cultivation: Recent, current, and future extent. PLoS ONE, 2017, 12(9): ,
DOI
|
17 |
|
18 |
Innangi M, Menta C, Pinto S. Integrating chemical, biological and soil fauna variables during beech leaf litter decay: a partial least squares approach for a comprehensive view of the decomposition process. Appl Soil Ecol, 2018, 130: 69-78,
DOI
|
19 |
|
20 |
Kimmins JP. Forest ecology, 1987 London Macmillan Publishing Company
|
21 |
Leal Filho W, Setti AFF, Azeiteiro UM, Lokupitiya E, Donkor FK, Etim NN, Matandirotya N, Olooto FM, Sharifi A, Nagy GJ, Djeki I. An overview of the interactions between food production and climate change. Sci Total Environ, 2022, 838,
DOI
|
22 |
Lopes AP, Nelson BW, Wu J, de Alencastro Graça PML, Tavares JV, Prohaska N, Martins GA, Saleska SR. Leaf flush drives dry season green-up of the Central Amazon. Remote Sens Environ, 2016, 182: 90-98,
DOI
|
23 |
Martins WBR, Vale RL, Ferreira GC, Andrade VMS, Dionísio LFS, Rodrigues RP, Oliveira F, de Souza GMP. Litterfall, litter stock and water holding capacity in post-mining forest restoration ecosystems, Eastern Amazon. Rev Bras Ciências Agrárias Brazilian J Agric Sci, 2018, 13: 1-9,
DOI
|
24 |
Moon K, Duff TJ, Tolhurst KG. Sub-canopy forest winds: understanding wind profiles for fire behaviour simulation. Fire Saf J, 2019, 105: 320-329,
DOI
|
25 |
Morais TMO, Berenguer E, Barlow J, França F, Lennox GD, Malhi Y, Rossi LC, de Seixas MMM, Ferreira J. Leaf-litter production in human-modified Amazonian forests following the El Niño-mediated drought and fires of 2015–2016. For Ecol Manag, 2021,
DOI
|
26 |
Moura MM, dos Santos AR, Pezzopane JEM, Alexandre RS, da Silva SF, Pimentel SM, de Andrade MSS, Silva FGR, Branco ERF, Moreira TR, da Silva RG, de Carvalho GR. Relation of El Niño and La Niña phenomena to precipitation, evapotranspiration and temperature in the Amazon basin. Sci Total Environ, 2019, 651: 1639-1651,
DOI
|
27 |
Numata I, Khand K, Kjaersgaard J, Cochrane MA, Silva SS. Forest evapotranspiration dynamics over a fragmented forest landscape under drought in southwestern Amazonia. Agric for Meteorol, 2021, 306,
DOI
|
28 |
Patharkar OR, Walker JC. Connections between abscission, dehiscence, pathogen defense, drought tolerance, and senescence. Plant Sci, 2019, 284: 25-29,
DOI
|
29 |
Queiroz MG, da Silva TGF, Zolnier S, de Souza CAA, de Souza LSB, Neto AJS, de Araújo GGL, Ferreira WPM. Seasonal patterns of deposition litterfall in a seasonal dry tropical forest. Agric for Meteorol, 2019, 279,
DOI
|
30 |
R Development Core Team (2023) R: A language and environment for statistical computing. R foundation for statistical computing v. 4. 2. 3
|
31 |
Rani V, Sreelekshmi S, Preethy CM, BijoyNandan S. Phenology and litterfall dynamics structuring ecosystem productivity in a tropical mangrove stand on South West coast of India. Reg Stud Mar Sci, 2016, 8: 400-407,
DOI
|
32 |
Roe S, Streck C, Obersteiner M, Frank S, Griscom B, Drouet L, Fricko O, Gusti M, Harris N, Hasegawa T, Hausfather Z, Havlík P, House J, Nabuurs GJ, Popp A, Sánchez MJS, Sanderman J, Smith P, Stehfest E, Lawrence D. Contribution of the land sector to a 1.5 °C world. Nat Clim Chang, 2019, 9: 817-828,
DOI
|
33 |
Rosalem LMP, Wendland EC, Anache JAA. Understanding the water dynamics on a tropical forest litter using a new device for interception measurement. Ecohydrology, 2019, 12,
DOI
|
34 |
Santos AFA, Carneiro ACP, Martinez DT, Caldeira SF. Capacidade de retenção hídrica do estoque de serapilheira de eucalipto. Floresta e Ambient, 2017, 24: 1-9,
DOI
|
35 |
Simões S, Gonçalves AL, Jones TH, Sousa JP, Canhoto C. Air temperature more than drought duration affects litter decomposition under flow intermittency. Sci Total Environ, 2022, 829,
DOI
|
36 |
Taiz L, Zeiger E, Møller IM, Murphy A. Fisiologia e Desenvolvimento Vegetal, 2017 6 Porto Artmed
|
37 |
Townsend A, Asner G, Cleveland C. The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol, 2008, 23: 424-431,
DOI
|
38 |
Xiao Q, McPherson EG. Surface water storage capacity of twenty tree species in Davis, California. J Environ Qual, 2016, 45: 188-198,
DOI
|
39 |
Zhang KR, Zhu Q, LiuWang JXM, Zhou XL, Li MX. Spatial and temporal variations of N2O emissions from global forest and grassland ecosystems. Agric for Meteorol, 2019, 266–267: 129-139,
DOI
|