1 |
Alleaume S, Hely C, Le Roux J, Korontzi S, Swap RJ, Shugart HH, Justice CO. Using MODIS to evaluate heterogeneity of biomass burning in southern African savannahs: a case study in Etosha. Int J Remote Sens, 2005, 26(19): 4219-4237,
DOI
|
2 |
Allen JL, Sorbel B. Assessing the differenced normalized burn ratio’s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska’s national parks. Int J Wildland Fire, 2008, 17(4): 463-475,
DOI
|
3 |
Amatulli G, Camia A, San-Miguel-Ayanz J. Estimating future burned areas under changing climate in the EU-Mediterranean countries. Sci Total Environ, 2013, 450: 209-222,
DOI
|
4 |
Ariza A, Rey JS, de Miguel SM. Comparison of maximum likelihood estimators and regression models for burn severity mapping in Mediterranean forests using Landsat TM and ETM+ data. Rev Cartogr, 2019,
DOI
|
5 |
Arnett JTTR, Coops NC, Daniels LD, Falls RW. Detecting forest damage after a low-severity fire using remote sensing at multiple scales. Int J Appl Earth Obs Geoinf, 2015, 35: 239-246,
DOI
|
6 |
Ba R, Song W, Lo S, Xie Z (2020) Spectral characteristic analysis of burned area based on MODIS Data. In: Wu GY, Tsai KC, Chow WK (eds) The proceedings of 11th Asia-Oceania symposium on fire science and technology. AOSFST 2018. Springer, Singapore, pp 391–404. https://doi.org/10.1007/978-981-32-9139-3_29
|
7 |
Baysal İ, Bilgili E, Bașkent EZ. Orman yanginlari ve orman amenajman planlari. Kast Üniv Orman Fak Derg, 2016, 16(1): 169-180,
DOI
|
8 |
Beltrán-Marcos D, Suárez-Seoane S, Fernández-Guisuraga JM, Fernández-García V, Pinto R, García-Llamas P, Calvo L. Mapping soil burn severity at very high spatial resolution from unmanned aerial vehicles. Forests, 2021, 12(2): 179,
DOI
|
9 |
Borini Alves D, Montorio Llovería R, Pérez-Cabello F, Vlassova L. Fusing Landsat and MODIS data to retrieve multispectral information from fire-affected areas over tropical savannah environments in the Brazilian Amazon. Int J Remote Sens, 2018, 39(22): 7919-7941,
DOI
|
10 |
Cansler CA, McKenzie D. How robust are burn severity indices when applied in a new region? Evaluation of alternate field based and remote rensing methods. Remote Sens, 2012, 4(2): 456-483,
DOI
|
11 |
Chen X, Vogelmann JE, Rollins M, Ohlen D, Key CH, Yang L, Huang C, Shi H. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest. Int J Remote Sens, 2011, 32(23): 7905-7927,
DOI
|
12 |
Choubin B, Solaimani K, Roshan MH, Malekian A. Watershed classification by remote sensing indices: a fuzzy c-means clustering approach. J Mt Sci, 2017, 14(10): 2053-2063,
DOI
|
13 |
Chuvieco E, Martin MP, Palacios A. Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. Int J Remote Sens, 2002, 23(23): 5103-5110,
DOI
|
14 |
Chuvieco E, Mouillot F, van der Werf GR, San Miguel J, Tanasse M, Koutsias N, García M, Yebra M, Padilla M, Gitas I. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens Environ, 2019, 225: 45-64,
DOI
|
15 |
Cochrane MA, Ryan KC. Cochrane MA. Fire and fire ecology: Concepts and principles. Tropical Fire Ecology, 2009 Chichester Springer 25-62,
DOI
|
16 |
De Santis A, Chuvieco E. GeoCBI: a modified version of the composite burn index for the initial assessment of the short-term burn severity from remotely sensed data. Remote Sens Environ, 2009, 113(3): 554-562,
DOI
|
17 |
Epting J, Verbyla D, Sorbel B. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sens Environ, 2005, 96(3–4): 328-339,
DOI
|
18 |
Escuin S, Navarro R, Fernandez P. Fire severity assessment by using NBR (normalized burn ratio) and NDVI (normalized difference vegetation index) derived from LANDSAT TM/ETM images. Int J Remote Sens, 2008, 29(4): 1053-1073,
DOI
|
19 |
Fernández-García V, Santamarta M, Fernández-Manso A, Quintano C, Marcos E, Calvo L. Burn severity metrics in fire-prone pine ecosystems along a climatic gradient using Landsat imagery. Remote Sens Environ, 2018, 206: 205-217,
DOI
|
20 |
Fernández-Manso A, Fernández-Manso O, Quintano C. SENTİNEL-2A red-edge spectral indices suitability for discriminating burn severity. Int J Appl Earth Obs Geoinf, 2016, 50: 170-175,
DOI
|
21 |
Fornacca D, Ren G, Xiao W. Evaluating the best spectral indices for the detection of burn scars at several post-fire dates in a mountainous region of Northwest Yunnan, China. Remote Sens, 2018, 10(8): 1196,
DOI
|
22 |
French NH, Kasischke ES, Hall RJ, Murphy KA, Verbyla DL, Hoy EE, Allen JL. Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results. Int J Wildland Fire, 2008, 17(4): 443-462,
DOI
|
23 |
Gao B-C. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ, 1996, 58(3): 257-266,
DOI
|
24 |
García-Llamas P, Suárez-Seoane S, Fernández-Guisuraga JM, Fernández-García V, Fernández-Manso A, Quintano C, Taboada A, Marcos E, Calvo L. Evaluation and comparison of Landsat 8, Sentinel-2 and Deimos-1 remote sensing indices for assessing burn severity in Mediterranean fire-prone ecosystems. Int J Appl Earth Obs Geoinf, 2019, 80: 137-144,
DOI
|
25 |
Gascon F, Ramoino F (2017, April). Sentinel-2 data exploitation with ESA's sentinel-2 toolbox. In: EGU general assembly conference abstracts, p 19548
|
26 |
Hoscilo A, Tansey KJ, Page SE. Post-fire vegetation response as a proxy to quantify the magnitude of burn severity in tropical peatland. Int J Remote Sens, 2013, 34(2): 412-433,
DOI
|
27 |
Hoy EE, French NHF, Turetsky MR, Trigg SN, Kasischke ES. Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity in Alaskan black spruce forests. Int J Wildland Fire, 2008, 17(4): 500-514,
DOI
|
28 |
Huang H, Roy D, Boschetti L, Zhang H, Yan L, Kumar S, Gomez-Dans J, Li J. Separability analysis of Sentinel-2A multi-spectral instrument (MSI) data for burned area discrimination. Remote Sens, 2016, 8(10): 873,
DOI
|
29 |
Hudak AT, Morgan P, Bobbitt MJ, Smith AMS, Lewis SA, Lentile LB, Robichaud PR, Clark JT, McKinley RA. The relationship of multispectral satellite imagery to immediate fire effects. Fire Ecol, 2007, 3(1): 64-90,
DOI
|
30 |
Huete AR. A soil-adjusted vegetation index (SAVI). Remote Sens Environ, 1988, 25(3): 295-309,
DOI
|
31 |
Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ, 2002, 83(1–2): 195-213,
DOI
|
32 |
Ilori CO, Pahlevan N, Knudby A. Analyzing performances of different atmospheric correction techniques for Landsat 8: application for coastal remote sensing. Remote Sens, 2019, 11(4): 469,
DOI
|
33 |
Itten KI, Meyer P. Geometric and radiometric correction of TM data of mountainous forested areas. IEEE Trans Geosci Remote Sens, 1993, 31(4): 764-770,
DOI
|
34 |
Kasischke ES, Bruhwiler LP. Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998. J Geophys Res Atmos, 2002,
DOI
|
35 |
Kaufman YJ, Sendra C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. Int J Remote Sens, 1988, 9(8): 1357-1381,
DOI
|
36 |
Keeley JE. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int J Wildland Fire, 2009, 18(1): 116-126,
DOI
|
37 |
Key CH. Ecological and sampling constraints on defining landscape fire severity. Fire Ecol, 2006, 2(2): 34-59,
DOI
|
38 |
Key CH, Benson NC (2006) Landscape assessment (LA). In: Lutes DC (ed) FIREMON: fire effects monitoring and inventory system. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, pp LA-1–55. https://doi.org/10.2737/RMRS-GTR-164
|
39 |
Korhonen L, Packalen P, Rautiainen M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens Environ, 2017, 195: 259-274,
DOI
|
40 |
Lasaponara R, Lanorte A, Pignatti S. Multiscale fuel type mapping in fragmented ecosystems: preliminary results from hyperspectral MIVIS and multispectral Landsat TM data. Int J Remote Sens, 2006, 27(3): 587-593,
DOI
|
41 |
Lewis SA, Lentile LB, Hudak AT, Robichaud PR, Morgan P, Bobbitt MJ. Mapping ground cover using hyperspectral remote sensing after the 2003 Simi and Old wildfires in Southern California. Fire Ecol, 2007, 3(1): 109-128,
DOI
|
42 |
Liu Z, Yang J, Dwomoh F. Mapping recent burned patches in Siberian larch forest using Landsat and MODIS data. Eur J Remote Sens, 2016, 49(1): 861-887,
DOI
|
43 |
Lunetta RS, Elvidge C (1999) Remote sensing change detection: environmental monitoring methods and applications. CRC Press, Florida, pp 318
|
44 |
Luo H, Wu J. An assessment of the suitability of Sentinel-2 data for identifying burn severity in areas of low vegetation. J Indian Soc Remote Sens, 2022,
DOI
|
45 |
Lutes DC, Keane RE, Caratti J F, Key CH, Benson NC, Sutherland S, Gangi LJ (2006) FIREMON: fire effects monitoring and inventory system (Gen. Tech. Rep. RMRS-GTR-164). FS Department of Agriculture, Rocky Mountain Research Station, Fort Collins, USA. https://doi.org/10.2737/RMRS-GTR-164
|
46 |
Mallinis G, Mitsopoulos I, Chrysafi I. Evaluating and comparing Sentinel 2A and Landsat-8 operational land imager (OLI) spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. Gisci Remote Sens, 2018, 55(1): 1-18,
DOI
|
47 |
Matthew MW, Adler-Golden SM, Berk A, Felde G, Anderson GP, Gorodetzky D, Paswaters S, Shippert M (2002) Atmospheric correction of spectral imagery: evaluation of the FLAASH algorithm with AVIRIS data. In: Applied imagery pattern recognition workshop, pp 157–163
|
48 |
McCarley TR, Smith AMS, Kolden CA, Kreitler J. Evaluating the Mid-Infrared Bi-spectral Index for improved assessment of low-severity fire effects in a conifer forest. Int J Wildland Fire, 2018, 27(6): 407,
DOI
|
49 |
Michaletz ST, Johnson EA. How forest fires kill trees: a review of the fundamental biophysical processes. Scand J for Res, 2007, 22(6): 500-515,
DOI
|
50 |
Miller JD, Quayle B. Calibration and validation of immediate post-fire satellite-derived data to three severity metrics. Fire Ecol, 2015, 11(2): 12-30,
DOI
|
51 |
Miller JD, Thode AE. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta normalized burn ratio (dNBR). Remote Sens Environ, 2007, 109(1): 66-80,
DOI
|
52 |
Miller JD, Knapp EE, Key CH, Skinner CN, Isbell CJ, Creasy RM, Sherlock JW. Calibration and validation of the relative differenced normalized burn ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sens Environ, 2009, 113(3): 645-656,
DOI
|
53 |
Papageorgiou K, Hadjimitsis DG, Agapiou A, Themistocleous K, Koutsias N, Chrysoulakis N (2012) Spectral signatures of Pinus brutia post fire regeneration in Paphos forest, using ground spectroradiometers. In: Conference: 32nd EARSeL symposium, pp 223–230
|
54 |
Parker BM, Lewis T, Srivastava SK. Estimation and evaluation of multi-decadal fire severity patterns using Landsat sensors. Remote Sens Environ, 2015, 170: 340-349,
DOI
|
55 |
Parks SA, Dillon GK, Miller C. A new metric for quantifying burn severity: the relativized burn ratio. Remote Sens, 2014, 6(3): 1827-1844,
DOI
|
56 |
Pinty B, Verstraete M. GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio, 1992, 101(1): 15-20,
DOI
|
57 |
Pleniou M, Koutsias N. Sensitivity of spectral reflectance values to different burn and vegetation ratios: a multi-scale approach applied in a fire affected area. ISPRS J Photogramm Remote Sens, 2013, 79: 199-210,
DOI
|
58 |
Pletsch MAJS, Penha TV, Junior CHLS, Morelli F (2019) Combination of spectral indices for burned area detection in the Brazilian Amazonia. In: XIX Brazilian symposium on remote sensing, pp 1248–1251
|
59 |
Rogan J, Franklin J. Mapping wildfire burn severity in southern California forests and shrublands using enhanced thematic mapper imagery. Geocarto Int, 2001, 16(4): 91-106,
DOI
|
60 |
Saulino L, Rita A, Migliozzi A, Maffei C, Allevato E, Garonna AP, Saracino A. Detecting burn severity across Mediterranean forest types by coupling medium-spatial resolution satellite imagery and field data. Remote Sens, 2020, 12(4): 741,
DOI
|
61 |
Smith A, Drake N, Wooster M, Hudak A, Holden Z, Gibbons C. Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: comparison of methods and application to MODIS. Int J Remote Sens, 2007, 28(12): 2753-2775,
DOI
|
62 |
Song X-P, Huang W, Hansen MC, Potapov P. An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping. Sci Remote Sens, 2021,
DOI
|
63 |
Soverel NO, Perrakis DDB, Coops NC. Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sens Environ, 2010, 114(9): 1896-1909,
DOI
|
64 |
Teillet PM. Image correction for radiometric effects in remote sensing. Int J Remote Sens, 1986, 7(12): 1637-1651,
DOI
|
65 |
Trigg S, Flasse S. An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah. Int J Remote Sens, 2001, 22(13): 2641-2647,
DOI
|
66 |
Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ, 1979, 8(2): 127-150,
DOI
|
67 |
Turner MG, Romme WH. Landscape dynamics in crown fire ecosystems. Landsc Ecol, 1994, 9(1): 59-77,
DOI
|
68 |
Valor T, González-Olabarria JR, Piqué M, Casals P. The effects of burning season and severity on the mortality over time of Pinus nigra spp. salzmannii (Dunal) Franco and P. sylvestris L. For Ecol Manag, 2017, 406: 172-183,
DOI
|
69 |
Veraverbeke S, Lhermitte S, Verstraeten WW, Goossens R. Evaluation of pre/post-fire differenced spectral indices for assessing burn severity in a Mediterranean environment with Landsat Thematic Mapper. Int J Remote Sens, 2011, 32(12): 3521-3537,
DOI
|
70 |
White JD, Ryan KC, Key CC, Running SW. Remote sensing of forest fire severity and vegetation recovery. Int J Wildland Fire, 1996, 6(3): 125-136,
DOI
|
71 |
Whitman E, Batllori E, Parisien MA, Miller C, Coop JD, Krawchuk MA, Chong GW, Haire SL. The climate space of fire regimes in north-western North America. J Biogeogr, 2015, 42(9): 1736-1749,
DOI
|
72 |
Wilson EH, Sader SA. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens Environ, 2002, 80(3): 385-396,
DOI
|
73 |
Wu Z, Middleton B, Hetzler R, Vogel J, Dye D. Vegetation burn severity mapping using Landsat-8 and WorldView-2. Photogramm Eng Remote Sens, 2015, 81(2): 143-154,
DOI
|
74 |
Ye H, Chen C, Yang C. Atmospheric correction of Landsat-8/OLI imagery in turbid estuarine waters: a case study for the Pearl River estuary. IEEE J Sel Top Appl Earth Observations Remote Sens, 2016, 10(1): 252-261,
DOI
|
75 |
Zhu Z, Key C, Ohlen D, Benson N (2006) Evaluate sensitivities of burn severity mapping algorithms for different ecosystems and fire histories in the United States. Final Report to the Joint Fire Science Program (JFSP Project No. 01-1-4-12). USGS, Sioux Falls, USA. https://www.frames.gov/catalog/391
|