整合生物学期刊网 登录      注册

草业科学 ›› 2024, Vol. 41 ›› Issue (03): 588-598.

• • 上一篇    下一篇

低覆盖草地叶面积指数遥感估算方法

张云峰, 任鸿瑞   

  1. 太原理工大学测绘科学与技术系
  • 发布日期:2024-10-16
  • 基金资助:
    山西省省筹资金资助留学回国人员科研项目(2022-055)

  • Published:2024-10-16

摘要: 有效估算低覆盖草地叶面积指数(LAI),对监测低覆盖草地生长状况、优化完善草地管理具有重要意义。以往针对草地叶面积指数的研究大多集中于中高覆盖度草地,对低覆盖草地的研究相对较少。利用谷歌地球引擎(GEE),基于Landsat-8卫星数据提取所需特征变量,通过特征变量与叶面积指数的相关性及其在模型中的重要性进行特征优选,确定模型最佳变量个数,以此构建机器学习模型,探寻适合在低覆盖区草地估算叶面积指数的方法。结果显示,基于相关性特征优选的梯度提升回归树模型(r-GBRT)在低覆盖草地估算叶面积指数的效果较好,测试集的R2为0.686,均方根误差(RMSE)为0.101。结果表明,基于特征优选构建的机器学习模型在低覆盖条件下估算草地叶面积指数方面具有较好的应用价值。

关键词: 叶面积指数, 低覆盖草地, 机器学习, 特征优选, 随机森林, 梯度提升回归树, 遥感

中图分类号: